Answer:
D. The motion cannot be determined without knowing the speeds of the objects before the collision.
Explanation:
This question is tricky! We know the object moving to the left has a greater mass than the one moving to the right. We'd <em>assume</em> they would move to the left because the leftwards object has a greater mass, right?
Not. So. Fast.
We can solve for the objects' final velocity using the formula for momentum, m₁v₁ + m₂v₂ = (m₁ + m₂)v .
Now here's where the trap is sprung: <em>we don't think about the equation</em>. This shows that the final velocity of the objects and the direction depends on both the mass of the objects <em>and</em> their initial velocity.
Basically, what if the 3 kg object is moving at 1 m/s and the 4 kg object is moving at –0.5 m/s? The objects would move to the <em>right</em> after the collision!
Do we know the velocity of these objects? No, right?
That means we <em>can't</em> determine the direction of their motion <u>unless we know their initial, pre-collision velocity</u>. This question is tricky because we look at the 4 kg vs. 3 kg and automatically assume the 4 kg object would dictate the direction of motion. That's not true. It depends on velocity as well.
I hope this helps you! Have a great day!
We see black colour in absence of light. Black colour absoorbs all the light, ( just opposite of white) and hence we do not see any colour. Black colour is also related to darkness.
Answer:
I'm pretty sure the answer is runoff
The temperature of the air above it
Answer:
- 278.34 kg m/s^2
Explanation:
The rate of the change of momentum is the same as the force.
The force that an object feels when moviming in a circular motion is given by:
F = -mrω^2
Where ω is the angular speed and r is the radius of the circumference
Aditionally, the tangential velocity of the body is given as:
v = rω
The question tells us that
v = 25 m/s
r = 7m
mv = 78 kg m/s
Therefore:
m = (78 kg m/s) / (25 m/s) = 3.12 kg
ω = (25 m/s) / (7 m) = 3.57 (1/s)
Now, we can calculate the force or rate of change of momentum:
F = - (3.12 kg) (7 m)(3.57 (1/s))^2
F = - 278.34 kg m/s^2