2. <span>(Note that sulfur is 2 columns from the right-hand end of the periodic table)</span>
Answer:
Joints is where two bones meet.
In this item, I supposed, that we are determine the molar fraction of oxygen and carbon dioxide in the sample. This can be done by dividing their respective partial pressures by the total pressure of the sample.
O2 : mole fraction = (100.7 mmHg) / (763.00 mmHg) = 0.13
CO2 : mole fraction = (33.57 mmHg) / (763.00 mmHg) = 0.044
Answers: O2 = 0.13
CO2 = 0.044
Answer:
D. The equipment needed to accommodate the high temperature and pressure will be expensive to produce.
Explanation:
Hello!
In this case, for the considered reaction, it is clear it is an exothermic reaction because it produces energy; and therefore, the higher the temperature the more reactants are yielded as the reverse reaction is favored. Moreover, since the effect of pressure is verified as favoring the side with fewer moles; in this case the products side (2 moles of ammonia).
In such a way, the high pressure favors the formation of ammonia whereas the high temperature the formation of hydrogen and nitrogen and therefore, option A is ruled out. Since the high pressure shifts the reaction rightwards and the high temperature leftwards, we would not be able to know whether the reaction has ended or not because it will be a "go and come back" process, that is why B is also discarded. Now, since hydrogen and nitrogen would be the "wastes", we discard C because they are not toxic. That is why the most accurate answer would be D. because it is actually true that such equipment is quite expensive.
Best regards!
Answer:
The correct option is:
A) by direct or indirect contact between objects at different temperatures
Explanation:
Heat can be transferred in three different methods:
Conduction, Convection and Radiation
Conduction is heat transfer through direct contact between substances at different temperatures.
Convection is the heat transfer which takes place through air currents.
Radiation is the heat transfer that does not require contact between two objects.
Hence, heat transfer can take place through direct or indirect contact between objects at different temperatures.