Answer:
7200 kg.m/s
Explanation:
According the law of conservation of linear momentum, the sum of momentum before and after collision are equal.
Using this principle, the sum of initial momentum will be given as p=mv where p is momentum, m is mass and v is velocity
Initial momentum
Mass of whale*initial velocity of whale + mass of seal*initial seal velocity
Since the seal is initially stationary, its velocity is zero. By substitution and taking right direction as positive
Initial momentum will be
1200*6+(280*0)=7200 kg.m/s
Since both initial and final momentum should be equal, hence the final momentum will also be 7200 kg.m/s
Answer:
Resistance increases with increase in temperature which depends on power supplied which also depends on voltage.
Thermal expansion will make resistance larger.
Explanation:
Light bulb is a good example of a filament lamp. If we plot the graph of voltage against current we will notice that resistance is constant at constant temperature.
The filament heats up when an electric current passes through it, and produces light as a result.
The resistance of a lamp increases as the temperature of its filament increases. The current flowing through a filament lamp is not directly proportional to the voltage across it.
tensile stress begins to appear in resistor as the temperature rises. Thus, the resistance value increases as the temperature rises. Resistance value can only decrease as the temperature rises in case of thin film resistor with aluminium substrate.
In case of a filament bulb, the resistance will increase as increase in length of the wire. The thermal expansion in this regard is linear expansivity in which resistance is proportional to length of the wire.
Resistance therefore get larger.
Answer:
a) 4.9*10^-6
b) 5.71*10^-15
Explanation:
Given
current, I = 3.8*10^-10A
Diameter, D = 2.5mm
n = 8.49*10^28
The equation for current density and speed drift is
J = I/A = (ne) Vd
A = πD²/4
A = π*0.0025²/4
A = π*6.25*10^-6/4
A = 4.9*10^-6
Now,
J = I/A
J = 3.8*10^-10/4.9*10^-6
J = 7.76*10^-5
Electron drift speed is
J = (ne) Vd
Vd = J/(ne)
Vd = 7.76*10^-5/(8.49*10^28)*(1.60*10^-19)
Vd = 7.76*10^-5/1.3584*10^10
Vd = 5.71*10^-15
Therefore, the current density and speed drift are 4.9*10^-6
And 5.71*10^-15 respectively
Answer:
The angle of banked curve that makes the reliance on friction unnecessary is
Explanation:
In order the car to stay on the curve without friction, the net force in the direction of radius should be equal or smaller than the centripetal force. Otherwise the car could slide off the curve.
The only force in the direction of radius is the sine component of the weight of the car
The cosine component is equivalent to the normal force, which we will not be using since friction is unnecessary.
Newton’s Second Law states that
Also, the car is making a circular motion:
Combining the equations:
Finally the angle is