As we know,
1 D = 3.34 × 10⁻³⁰ C.m
So,
1.44 D = ?
Solving for 1.44 D,
= (3.34 × 10⁻³⁰ C.m × 1.44 D) ÷ 1 D
1.44 D = 4.80 × 10⁻³⁰ C.m
Dipole Moment is given as,
Dipole Moment = q × r
Solving for q,
q = Dipole Moment / r ------ (1)
Where,
Dipole Moment = 4.80 × 10⁻³⁰ C.m
r = 163 pm = 1.63 × 10⁻¹⁰ m
Putting values in eq. 1,
q = 4.80 × 10⁻³⁰ C.m / 1.63 × 10⁻¹⁰ m
q = 2.94 × 10⁻²⁰ C
As,
1.602 × 10⁻¹⁹ C = 1 e⁻
So,
2.94 × 10⁻²⁰ C = X e⁻
Solving for X,
X = (2.94 × 10⁻²⁰ C × 1 e⁻) ÷ 1.602 × 10⁻¹⁹ C
= 0.183 e⁻
Result:
So one element is containing + 0.183 e⁻ while the other element is containing - 0.183 e⁻.
Answer:
A. we can use sulfuric acid to prepare PbSO4
Answer: Na, S, Cl
Explanation:
Atomic size decreases as one moves from left to right on the periodic table with elements in the same period. This is as a result of the electrons increasing in the outer circle and thus being drawn to the protons in the nucleus which will lead to the outer shell area decreasing.
Sodium (Na) comes before Sulfur (S) which comes before Chlorine (S) so this is the decreasing order as they are all in the same period.
Answer:
Boron
Explanation:
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example if neutral atom has 6 protons than it must have 6 electrons. The sum of neutrons and protons is the mass number of an atom while the number of protons are number of electrons is the atomic number of an atom.
For example
In given atomic model we can see that there are five electrons out side the nucleus it means this atomic model is of that element which have atomic number 5 and it is boron.
It has 5 electron 5 proton and 6 neutrons.
It means its atomic number is five and mass number is 5+6 = 11