Answer:
The volume of the gas at 100°C is 4.6189 liters.
Explanation:
For this problem we are going to use Charles' law. Charles' law states that the volume is directly proportional to temperature given that the pressure is constant. In order to use the equation, the unit of temperature should be in Kelvin.
The working equation is:
=
where V1 and T1 are the initial volume and temperature while V2 and T2 are the final conditions.
Let us convert first the temperatures before solving for the final volume.
To convert Celsius to Kelvin just add 273.15 to temperature in Celsius.
50°C + 273.15 = 323.15 K
100°C + 273.15 = 373.15 K
Solving for the final volume:
V₂ =
V₂ =
V₂ = 4.6189 L
Therefore the final volume of the gas at 100°C is 4.6189 L.
Explanation:
Answer:
OMG so big question!!!!!!!!!!!!
The balanced equation for the reaction between Mg and HCl is as follows
Mg + 2HCl --> MgCl₂ + H₂
stoichiometry of HCl to H₂ is 2:1
number of HCl moles reacted - 0.400 mol/L x 0.100 L = 0.04 mol of HCl
since Mg is in excess HCl is the limiting reactant
number of H₂ moles formed - 0.04/2 = 0.02 mol of H₂
we can use ideal gas law equation to find the volume of H₂
PV = nRT
where
P - pressure - 1 atm x 101 325 Pa/atm = 101 325 Pa
V - volume
n - number of moles - 0.02 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature in Kelvin - 0 °C + 273 = 273 K
substituting these values in the equation
101 325 Pa x V = 0.02 mol x 8.314 Jmol⁻¹K⁻¹ x 273 K
V = 448 x 10⁻⁶ m³
V = 448 mL
therefore answer is
c. 448 mL