Answer:
(i) 12 V in series with 18 Ω.
(ii) 0.4 A; 1.92 W
(iii) 1,152 J
(iv) 18Ω — maximum power transfer theorem
Explanation:
<h3>(i)</h3>
As seen by the load, the equivalent source impedance is ...
10 Ω + (24 Ω || 12 Ω) = (10 +(24·12)/(24+12)) Ω = 18 Ω
The open-circuit voltage seen by the load is ...
(36 V)(12/(24 +12)) = 12 V
The Thevenin's equivalent source seen by the load is 12 V in series with 18 Ω.
__
<h3>(ii)</h3>
The load current is ...
(12 V)/(18 Ω +12 Ω) = 12/30 A = 0.4 A . . . . load current
The load power is ...
P = I^2·R = (0.4 A)^2·(12 Ω) = 1.92 W . . . . load power
__
<h3>(iii)</h3>
10 minutes is 600 seconds. At the rate of 1.92 J/s, the electrical energy delivered is ...
(600 s)(1.92 J/s) = 1,152 J
__
<h3>(iv)</h3>
The load resistance that will draw maximum power is equal to the source resistance: 18 Ω. This is the conclusion of the Maximum Power Transfer theorem.
The power transferred to 18 Ω is ...
((12 V)/(18 Ω +18 Ω))^2·(18 Ω) = 144/72 W = 2 W
Answer:
Flow energy is defined as, flow energy is the energy needed to push fluids into control volume and it is the amount of work done required to push the entire fluid. It is also known as flow work. Flow energy is not the fundamental quantities like potential and kinetic energy.
Fluid at state of rest do not possess any flow energy. It is mostly converted into internal energy as, rising in the fluid temperature.
Answer:
Option B
Explanation:
An operational amplifier usually has a high open loop gain of around 10^5 which allows a wide range get of feed back levels in order to achieve the desired performance so therefore a low open loop gain reduces the range feed back level thereby reducing the performance which can cause errors in the output voltage.
Answer:
88.18 W
Explanation:
The weight of the boy is given as 108 lb
Change to kg =108*0.453592= 48.988 kg = 49 kg
The slope is given as 6% , change it to degrees as
6/100 =0.06
tan⁻(0.06)= 3.43°
The boy is travelling at a constant speed up the slope = 7mi/hr
Change 7 mi/h to m/s
7*0.44704 =3.13 m/s
Formula for power P=F*v where
P=power output
F=force
v=velocity
Finding force
F=m*g*sin 3.43°
F=49*9.81*sin 3.43° =28.17
Finding the power out
P=28.17*3.13 =88.18 W