To solve this problem it is necessary to apply the law of Malus which describes the change in the Intensity of Light when it crosses a polarized surface.
Mathematically the expression is given as

Where,
= Initial Intensity
I = Final Intensity after pass through the polarizer
= Angle between the polarizer and the light
Since it is sought to reduce the intensity by half the relationship between the two intensities will be given as

Using the Malus Law we have,





Angle with respect to maximum is 
The work done by tension force of 14N applied on the laptop by a rope as it moves 2.0 mm up the slope is 0.028 J
W = F d cos θ
W = Work done
F = Force
d = Displacement
θ = Angle between force and displacement vector
F = 14 N
d = 2 mm = 0.002 m
θ = 0
W = 14 * 0.002 * 1
W = 0.028 J
Work done is the change in energy of an object. So if an object moves a certain distance, work is done on the object. If the force and displacement are perpendicular to each other there is no work done on the object.
Therefore, the work done by tension on the laptop is 0.028 J
To know more about work done
brainly.com/question/12834956
#SPJ4
An electric power measure the rate of electrical energy transfer by an electric circuit per unit of time.
Answer:
r=6.05km/hr
z=59.1 degree to the horizontal
Explanation:
A bird is flying east at 5.2 kilometers/hour relative to the air. There's a crosswind blowing at 3.1 kilometers/hour toward the south relative to the ground. What is the bird's velocity relative to the ground? State your answer to one decimal place
can be solved using pythagoras theorem
r^2=o^2+a^2
r^2=5.2^2+3.1^2
r^2=36.65
r=6.1km/hr is te birds velocity relative to the ground
tanz=5.2/3.1
z=tan^-1(5,2/3.1)
z=59.1 degree to the horizontal
Answer:
3 electron hai bro of puch mujhe sab aata h