There are two kinds of forces, or attractions, that operate in a molecule—intramolecularand intermolecular. Let's try to understand this difference through the following example.

Figure of towels sewn and Velcroed representing bonds between hydrogen and chlorine atoms
We have six towels—three are purple in color, labeled hydrogen and three are pink in color, labeled chlorine. We are given a sewing needle and black thread to sew one hydrogen towel to one chlorine towel. After sewing, we now have three pairs of towels: hydrogen sewed to chlorine. The next step is to attach these three pairs of towels to each other. For this we use Velcro as shown above.
So, the result of this exercise is that we have six towels attached to each other through thread and Velcro. Now if I ask you to pull this assembly from both ends, what do you think will happen? The Velcro junctions will fall apart while the sewed junctions will stay as is. The attachment created by Velcro is much weaker than the attachment created by the thread that we used to sew the pairs of towels together. A slight force applied to either end of the towels can easily bring apart the Velcro junctions without tearing apart the sewed junctions.
Exactly the same situation exists in molecules. Just imagine the towels to be real atoms, such as hydrogen and chlorine. These two atoms are bound to each other through a polar covalent bond—analogous to the thread. Each hydrogen chloride molecule in turn is bonded to the neighboring hydrogen chloride molecule through a dipole-dipole attraction—analogous to Velcro. We’ll talk about dipole-dipole interactions in detail a bit later. The polar covalent bond is much stronger in strength than the dipole-dipole interaction. The former is termed an intramolecular attraction while the latter is termed an intermolecular attraction.
Answer:
molarity = 0.385 moles/kg
Explanation:
Assume that the volume of the aqueous solution given is 1 liter = 1000 ml
Now, density can be calculated using the following rule:
density = mass / volume
Therefore:
mass = density * volume = 1.23 * 1000 = 1230 grams
Now, 0.467 m/L * 1L = 0.467 moles of HCl
We will get the mass of the 0.467 moles of HCl as follows:
mass = molar mass * number of moles = (1+35.5)*0.467 = 17.0455 grams
Now, we have the mass of the solution (water + HCl) calculated as 1230 grams and the mass of the HCl calculated as 17.0455 grams. We can use this information to get the mass of water as follows:
mass of water = 1230 - 17.0455 = 1212.9545 grams
Finally, we will get the molarity as follows:
molarity = number of moles of solute / kg of solution
molarity = (0.467) / (1212.9594*10^-3)
molarity = 0.385 mole/kg
Hope this helps :)
Answer:B random mutations
Explanation: Because I took the test
Answer:
23 L
Explanation:
We'll begin by converting celsius temperature to Kelvin temperature. This can be obtained as follow:
T(K) = T(°C) + 273
Initial temperature (T₁) = 100 °C
Initial temperature (T₁) = 100 °C + 273
Initial temperature (T₁) = 373 K
Final temperature (T₂) = 50.5 °C
Final temperature (T₂) = 50.5 °C + 273
Final temperature (T₂) = 323.5 K
Finally, we shall determine the initial volume of gas. This can be obtained as follow:
Initial temperature (T₁) = 373 K
Final temperature (T₂) = 323.5 K
Final volume (V₂) = 20 L
Initial volume (V₁) =?
V₁/T₁ = V₂/T₂
V₁ / 373 = 20 / 323.5
Cross multiply
V₁ × 323.5 = 373 × 20
V₁ × 323.5 = 7460
Divide both side by 323.5
V₁ = 7460 / 323.5
V₁ = 23 L
Thus, the original volume of the gas is 23 L
The isotope of an atom containing 40 protons and 51 nuetrons suddenly has two nuetrons added to it. What isotope is created?