Answer:
As we keep on increasing the radius the value of the gravitation force of attraction decreases and as we decrease the radius the gravitation force increases.
Explanation:
Like the coulombs law of electrostatics, the law of gravitation also depends inversely on the square of the value of r. Therefore, as we keep on increasing the value of r the value of the gravitation force decreases and as we decrease the value of the r the value of gravitation force increases.
Gravitation Force=
Coulombs's Law= 
Answer:
32.46m/s
Explanation:
Hello,
To solve this exercise we must be clear that the ball moves with constant acceleration with the value of gravity = 9.81m / S ^ 2
A body that moves with constant acceleration means that it moves in "a uniformly accelerated motion", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are the follow

Where
Vf = final speed
Vo = Initial speed
=7.3m/S
A = g=acceleration
=9.81m/s^2
X = displacement
=51m}
solving for Vf

the speed with the ball hits the ground is 32.46m/s
the process by which green plants and some other organisms use sunlight to synthesize foods from carbon dioxide and water. Photosynthesis in plants generally involves the green pigment chlorophyll and generates oxygen as a byproduct.The inputs of photosynthesis are light energy, and matter in the form of water absorbed through the roots, and carbon dioxide absorbed through the leaves.The main outputs are oxygen, which is released into the air, and glucose sugar (chemical energy), which is used to keep the plant alive.
Answer:
796.18 Hz
Explanation:
Applying,
Maximum velocity = Amplitude×Angular velocity
Therefore,
V' = A(2πf)............... Equation 1
Where V' = maximum velocity of the eardrum, A = Amplitude of vibration of the eardrum, f = frequency of the eardrum vibration, π = pie
make f the subject of the equation
f = V'/2πA................ Equation 2
From the question,
Given: V' = 3.6×10⁻³ m/s, A' = 7.2×10⁻⁷ m,
Constant: 3.14.
Substitute these values into equation 2
f = 3.6×10⁻³/( 7.2×10⁻⁷×2×3.14)
f = 796.18 Hz