Answer:
Reduction
Explanation:
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
Mn⁺⁷ +3e⁻ → Mn⁴⁺
Mn gets three electrons , its oxidation state reduced from +7 to +4 so Mn gets reduced.
Examples:
Consider the following reactions.
4KI + 2CuCl₂ → 2CuI + I₂ + 4KCl
the oxidation state of copper is changed from +2 to +1 so copper get reduced.
CO + H₂O → CO₂ + H₂
the oxidation state of carbon is +2 on reactant side and on product side it becomes +4 so carbon get oxidized.
H₂S + 2NaOH → Na₂S + 2H₂O
The oxidation sate of sulfur is -2 on reactant side and in product side it is also -2 so it neither oxidized nor reduced.
The answer to your question is 40° because freezing temp for a liquid is 32°
Answer: Farmers were paid to practice soil-conserving techniques like crop rotation and terracing
Explanation:
read about it here: https://www.pbs.org/wgbh/americanexperience/features/dust-bowl-surviving-dust-bowl/
Answer:
W = - 500 KJ
∴ the work is done on the system
Explanation:
isothermal system:
∴ ΔU = 0; ⇒ Q = W
∴ W = P1V1 -P2V2
⇒ W = ((100KPa)*(25m³)) - ((300KPa)*(10m³))
⇒ W = 2500KPa.m³ - 3000KPa,m³
⇒ W = - 500 KPa.m³ = - 500 KJ
∴ W (-) the work is done on the system
<u>Answer:</u> The freezing point of solution is 5.35°C
<u>Explanation:</u>
The equation used to calculate depression in freezing point follows:
To calculate the depression in freezing point, we use the equation:
Or,
where,
Freezing point of pure solution = 5.5°C
i = Vant hoff factor = 1 (For non-electrolytes)
= molal freezing point elevation constant = 4.90°C/m
= Given mass of solute (naphthalene) = 2.60 g
= Molar mass of solute (naphthalene) = 128.2 g/mol
= Mass of solvent (benzene) = 675 g
Putting values in above equation, we get:
Hence, the freezing point of solution is 5.35°C