Complete question:
An electron is a subatomic particle (m = 9.11 x 10-31 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +6.18 x 105 m/s to a final velocity of 2.59 x 106 m/s while traveling a distance of 0.0708 m. The electron's acceleration is due to two electric forces parallel to the x axis: F₁ = 8.87 x 10-17 N, and , which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F₂.
Answer:
(a) The net force of the electron, ∑F = 4.07 x 10⁻¹⁷ N
(b) the electric force, F₂ = 4.8 x 10⁻¹⁷ N
Explanation:
Given;
initial velocity of the electron, = +6.18 x 10⁵ m/s
final velocity of the electron, = 2.59 x 10⁶ m/s
the distance traveled by the electron, d = 0.0708 m
The first electric force,
(a) The net force of the electron is given as;
∑F = F₁ - F₂ = ma
where;
a is the acceleration of the electron
∑F = ma = (9.11 x 10⁻³¹ kg)(4.468 x 10¹³)
∑F = 4.07 x 10⁻¹⁷ N
(b) the electric force, F₂ is given as;
∑F = F₁ - F₂
F₂ = F₁ - ∑F
F₂ = 8.87 x 10⁻¹⁷ - 4.07 x 10⁻¹⁷
F₂ = 4.8 x 10⁻¹⁷ N