1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sloan [31]
3 years ago
15

How large a force is required to accelerate a 1300 kg car from rest to a speed of 20 m/s in a distance of 80 m?

Engineering
2 answers:
topjm [15]3 years ago
7 0

F=m*a

F=80*20

F =1600 ans"

Stolb23 [73]3 years ago
5 0

Answer: basically we are asked to find it's force and the formula that helps us to find force is Force= Mass× Acceleration

so let's put out the given and what we need to find

GIVEN. Solution

F=m.a

Mass= 1300. F=1300kg×20m/s

speed (Acceleration)=20m/2. F=26000Kg.m/s

Force=? F=26000N

N stands for Newton and the reason that it comes Newton is because it is the SI-unit of Force and the result of kg×m/s.

You might be interested in
For a certain gas, Cp = 840.4 J/kg-K; and Cv = 651.5 J/kg-K. How fast will sound travel in this gas if it is at an adiabatic sta
Crank

Answer:

The speed of the sound for the adiabatic gas is 313 m/s

Explanation:

For adiabatic state gas, the speed of the sound c is calculated by the following expression:

c=\sqrt(\gamma*R*T)

Where R is the gas's particular constant defined in terms of Cp and Cv:

R=Cp-Cv

For particular values given:

R=840.4 \frac{J}{Kg-K}- 651.5 \frac{J}{Kg-K}

R=188.9 \frac{J}{Kg-K}

The gamma undimensional constant is also expressed as a function of Cv and Cp:

\gamma=Cp/Cv

\gamma=840.4 \frac{J}{Kg-K} / 651.5 \frac{J}{Kg-K}

\gamma=1.29

And the variable T is the temperature in Kelvin. Thus for the known temperature:

c=\sqrt(1.29*188.9 \frac{J}{Kg-K}*377 K)

c=\sqrt(91867.73 \frac{J}{Kg})

The Jules unit can expressing by:

J=N.m=\frac{Kg.m}{s^2}* m

J=\frac{Kg.m^2}{s^2}

Replacing the new units for the speed of the sound:

c=\sqrt(91867.73 \frac{Kg.m^2}{Kg.s^2})

c=\sqrt(91867.73 \frac{m^2}{s^2})

c=313 m/s

3 0
3 years ago
Read 2 more answers
A program is seeded with 30 faults. During testing, 21 faults are detected, 15 of which are seeded faults and 6 of which are ind
Vesna [10]

Answer:

Estimated number of indigenous faults remaining undetected is 6

Explanation:

The maximum likelihood estimate of indigenous faults is given by,

N_F=n_F\times \frac{N_S}{n_S} here,

n_F = the number of unseeded faults = 6

N_S = number of seeded faults = 30

n_s = number of seeded faults found = 15

So NF will be calculated as,

N_F=6\times \frac{30}{15}=12

And the estimate of faults remaining is  N_F-n_F = 12 - 6 = 6

8 0
3 years ago
An aluminum alloy tube with an outside diameter of 3.50 in. and a wall thickness of 0.30 in. is used as a 14 ft long column. Ass
slega [8]

Answer:

slenderness ratio = 147.8

buckling load = 13.62 kips

Explanation:

Given data:

outside diameter is 3.50 inc

wall thickness 0.30 inc

length of column is 14 ft

E = 10,000 ksi

moment of inertia = \frac{\pi}{64 (D_O^2 -D_i^2)}

I = \frac{\pi}{64}(3.5^2 -2.9^2) = 3.894 in^4

Area = \frac{\pi}{4} (3.5^2 -2.9^2) = 3.015 in^2

radius = \sqrt{\frac{I}{A}}

r = \sqrt{\frac{3.894}{3.015}

r = 1.136 in

slenderness ratio = \frac{L}{r}

                              = \frac{14 *12}{1.136} = 147.8

buckling load = P_cr = \frac{\pi^2 EI}}{l^2}

P_{cr} = \frac{\pi^2 *10,000*3.844}{( 14\times 12)^2}

P_{cr} = 13.62 kips

3 0
3 years ago
For a column that is pinned at both ends, the critical buckling load can be calculated as, Pcr = π2 E I /L^2 where E is Young's
gulaghasi [49]

When a slender member is subjected to an axial compressive load, it may fail by a ... Consider a column of length, L, cross-sectional Moment of Inertia, I, having Young's Modulus, E. Both ends are pinned, meaning they can freely rotate ... p2EI L2 ... scr, is the Euler Buckling Load divided by the columns cross-sectional area

6 0
3 years ago
Question 1: Final Results = What are the values of the resistances such that the gain = -100, Rin = 1 MI2. Don't use resistances
lidiya [134]

Answer:

Explanation:

In a study of algebra, you will encounter many families of equations, or groups of

equations that share common characteristics. Of interest to us here is the family of

linear equations in one variable, a study that lays the foundation for understanding

more advanced families. In addition to solving linear equations, we’ll use the skills we

develop to solve for a specified variable in a formula, a practice widely used in science,

business, industry, and research.

A. Solving Linear Equations Using Properties of Equality

An equation is a statement that two expressions are

equal. From the expressions and

we can form the equation

which is a linear equation in one variable. To solve

an equation, we attempt to find a specific input or xvalue that will make the equation true, meaning the

left-hand expression will be equal to the right. Using

Table 1.1, we find that is a

true equation when x is replaced by 2, and is a false

equation otherwise. Replacement values that make

the equation true are called solutions or roots of the equation.

4 0
2 years ago
Other questions:
  • A steam pipe passes through a chemical plant, where wind passes in cross-flow over the outside of the pipe. The steam is saturat
    13·1 answer
  • First step in solving frames in to solve support reactions when looking at the frame as a whole. a)- True b)-False
    9·1 answer
  • A 356 cast aluminum test bar is tested in tension. The initial gage length as marked on the sample is 50mm and the initial diame
    9·1 answer
  • A pressure cylinder has an outer diameter 200 mm, maximum external pressure 4 MPa, and maximum allowable shear stress 27.5 MPa.
    13·1 answer
  • A partnership between a gaming company and moviemakers might happen in what two ways?
    6·1 answer
  • The input and output signals of a system is related by the following equation: fraction numerator d squared y over denominator d
    11·1 answer
  • Three bars each made of different materials are connected together and placed between two walls when the temperature is 12 oC. D
    9·1 answer
  • When nondeterminism results from multiple threads attempting to access a shared resource such as a shared variable or a shared f
    9·1 answer
  • There are three homes being built, each with an identical deck on the back. Each deck is comprised of two separate areas. One ar
    7·1 answer
  • Which level of acceleration should you use when accelerating on a short highway entry ramp?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!