The answer is 1023 particles
The products will be 
<h3>Chemical reactions</h3>
Zn is higher than hydrogen in the reactivity series. Thus, it will be able to displace hydrogen from the acid.
The equation of the reaction becomes: 
Hydrogen gas is released as a result. In fact, it is one of the ways of preparing hydrogen gas in the laboratory.
More on chemical reactivity can be found here: brainly.com/question/9621716
#SPJ1
There are 1,000 milligrams (mg) in one gram:
In 10 grams, there are 10 x 1,000 = 10,000 milligrams. This is a lethal dose of caffeine.
There are 4.05 mg/oz (milligrams/ounce) of caffeine in the soda.
In a 12 ounce can, there are 4.05 x 12 = 48.6 milligrams.
How many sodas would it take to kill you?
To find this, we divide the lethal dose amount (10,000 mg) by the amount of caffeine per can (48.6 mg).
10,000 ÷ 48.6 = 205.76.
Since 205 cans is not quite 10,000 mg, technically it would take 206 cans of soda to consume a lethal dose of caffeine.
Answer:
second energy level
Explanation:
Valence electrons are those electrons which are present in outer most orbital of the atom.
This can be easily found through the electronic configuration of atom.
Electronic configuration of F:
F₉ = 1s² 2s² 2p⁵
We can see that the valence electrons are present in second energy level of F atom.
There are seven valence electrons of fluorine.
It is called halogens.
Halogens are very reactive these elements can not be found free in nature. Their boiling points also increases down the group which changes their physical states. i.e fluorine is gas while iodine is solid.
Fluorine:
1. it is yellow in color.
2. it is flammable gas.
3. it is highly corrosive.
4. fluorine has pungent smell.
5. its reactions with all other elements are very vigorous except neon, oxygen, krypton and helium.