The work done in the isothermal process is 10 joule.
We need to know about the isotherm process to solve this problem. The isotherm process can be described as a process where the initial temperature system will be the same as the final temperature. Hence, the internal energy change will be zero.
ΔU = 0
Hence,
ΔU = Q - W
0 = Q - W
Q = W
It means that the heat transferred is the same as the work done.
From the question above, we know that the heat transferred is 10 joule. Thus, the work done in the isothermal process is 10 joule.
Find more on isothermal at: brainly.com/question/17097259
#SPJ4
Answer:
A I think
Pls Mark Brainiest, I'm trying to become Virtuoso
Explanation:
given,
mass of one planet (m1)=2*10^23 kg
mass of another planet (m2)=5*10^22kg
distance between them(d)=3*10^16m
gravitational constant(G)=6.67*10^-11Nm^2kg^-2
gravitational force between them(F)=?
we know,
F=Gm1m2/d^2
or, F=6.67*10^-11*2*10^23*5*10^22/(3*10^16)^2
or, F=6.67*2*5*10^-11+23+22/3*3*10^32
or, F=66.7*10^34/9*10^32
or, F=7.41*10^34-32
•°• F=7.41*10^2
thus, the gravitational force between them is 7.14*10^2
You need to find the mass of water in the pool.
Find the volume (10 x 4 x 3) = 120 m3
Water has a density of 1000g/m3,so 120 m3 = 120 x 1000 = 120 000 kg
[delta]H = 4.187 x 120 000 x 3.4 (and the units will be kJ)
You then use the heat of combustion knowing that each mole of methane
releases 891 kJ of heat so if you divide 891 into the previous answer,
you will get the number of moles of CH4