Answer:
So if we need to cover 1000 meters. And we go at a speed of 4.3 m/s. That means that every 4.3 meters we cover is 1 second. So we divide both amd get
1000/4.3 = 232.56 is approx the answer. Also the meters cancel out because
m/(m/s) = m*s/m, cancels out giving s as a unit.
<h2><u>
Therefore the answer is 232.56 seconds</u></h2>
Light at the red end of the visible portion has the least energy, lowest frequency, same speed, and longer wavelength compared to the violet end.
<h3><u>
Explanation:</u></h3>
The range in which the light exists is described as the electromagnetic spectrum. The light waves, radio waves, gamma rays,etc that exist in the world is not visible to human eyes. A kind of wave that modifies magnetic and electric fields is light. Spectroscopy makes use of all the frequencies and the wavelengths of the electromagnetic radiation.
The part of the electromagnetic spectrum that can be seen by the human eyes is the visible spectrum. The light waves with the wavelengths of 380 to 740 nm can be sen by the human eyes. Light at the red end of the visible portion has the least energy, lowest frequency, same speed, and longer wavelength compared to the violet end.
Answer:
A) The speed of the water must be 8.30 m/s.
B) Total kinetic energy created by this maneuver is 70.12 Joules.
Explanation:
A) Mass of squid with water = 6.50 kg
Mass of water in squid cavuty = 1.55 kg
Mass of squid = 
Velocity achieved by squid = 
Momentum gained by squid = 
Mass of water = 
Velocity by which water was released by squid = 
Momentum gained by water but in opposite direction = 
P = P'


B) Kinetic energy does the squid create by this maneuver:
Kinetic energy of squid = K.E =
Kinetic energy of water = K.E' = 
Total kinetic energy created by this maneuver:


Answer:
The tension on an object is equal to the mass of the object x gravitational force plus/minus the mass x acceleration. T = mg + ma.
Explanation: