<u>Answer:</u> The average atomic mass of X is 28.09 amu
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
.....(1)
Mass of isotope 1 = 27.979 amu
Percentage abundance of isotope 1 = 92.21 %
Fractional abundance of isotope 1 = 0.9212
Mass of isotope 2 = 28.976 amu
Percentage abundance of isotope 2 = 4.70 %
Fractional abundance of isotope 2 = 0.0470
Mass of isotope 3 = 29.974 amu
Percentage abundance of isotope 3 = 3.09 %
Fractional abundance of isotope 3 = 0.0309
Putting values in equation 1, we get:
![\text{Average atomic mass of X}=[(27.979\times 0.9212)+(28.976\times 0.0470)+(29.974\times 0.0309)]](https://tex.z-dn.net/?f=%5Ctext%7BAverage%20atomic%20mass%20of%20X%7D%3D%5B%2827.979%5Ctimes%200.9212%29%2B%2828.976%5Ctimes%200.0470%29%2B%2829.974%5Ctimes%200.0309%29%5D)

Hence, the average atomic mass of X is 28.09 amu
a. Emma creates a pressure difference allowing the fluid to flow.
The amount the amount of space a population has to grow in would be a limiting factor.
Answer:
.
Explanation:
Electrons are conserved in a chemical equation.
The superscript of
indicates that each of these ions carries a charge of
. That corresponds to the shortage of one electron for each
ion.
Similarly, the superscript
on each
ion indicates a shortage of three electrons per such ion.
Assume that the coefficient of
(among the reactants) is
, and that the coefficient of
(among the reactants) is
.
.
There would thus be
silver (
) atoms and
aluminum (
) atoms on either side of the equation. Hence, the coefficient for
and
would be
and
, respectively.
.
The
ions on the left-hand side of the equation would correspond to the shortage of
electrons. On the other hand, the
ions on the right-hand side of this equation would correspond to the shortage of
electrons.
Just like atoms, electrons are also conserved in a chemical reaction. Therefore, if the left-hand side has a shortage of
electrons, the right-hand side should also be
electrons short of being neutral. On the other hand, it is already shown that the right-hand side would have a shortage of
electrons. These two expressions should have the same value. Therefore,
.
The smallest integer
and
that could satisfy this relation are
and
. The equation becomes:
.
<span>B) phosphodiester </span> is the correct answer