Another advantage of advantage of using a microspectrophotometer to analyze fibers asides not causing damage to the sample is that the sample can be quite small.
<h3>What is a microspectrophotometer?</h3>
Microspectrophotometry is a biological technique used to measure the absorption or transmission spectrum of a solid or liquid material in either transmitted or reflected light.
Microspectrophotometry can also measure the emission of light by a sample, which is usually small as the micro implies.
One advantage of microspectrophotometry is that the sample does not get damaged. However,
However, another advantage of advantage of using a microspectrophotometer to analyze fibers asides not causing damage to the sample is that the sample can be quite small.
Learn more about microspectrophotometry at: brainly.com/question/5832827
Answer:
B. Respiration
Explanation:
cellular respiration is the process where cells use glucose (C6H12O6) and oxygen gas (O2) to make carbon dioxide (CO2) water (H2O) and ATP, which is energy
formula:
C6H12O6 + 6O2 -> 6CO2 + 6H20 + 38ATP
Carbon dioxide and water pretty sure
Answer:
The number of moles of Sr in one mole of Sr(HCO₃)₂ = 1 mole
The number of moles of H in one mole of Sr(HCO₃)₂ = 2 moles
The number of moles of C in one mole of Sr(HCO₃)₂ = 2 moles
The number of moles of O in one mole of Sr(HCO₃)₂ = 6 moles
Explanation:
The given chemical formula of the compound is Sr(HCO₃)₂
The number of atoms of Sr in the compound = 1
The number of atoms of H in the compound = 2
The number of atoms of C in the compound = 2
The number of atoms of O in the compound = 6
The number of atoms of each element present in each formula unit of Sr(HCO₃)₂ is proportional to the number of moles of each atom in one mole of Sr(HCO₃)₂
Therefore;
The number of moles of Sr in one mole of Sr(HCO₃)₂ = 1 mole
The number of moles of H in one mole of Sr(HCO₃)₂ = 2 moles
The number of moles of C in one mole of Sr(HCO₃)₂ = 2 moles
The number of moles of O in one mole of Sr(HCO₃)₂ = 6 moles.