Answer:
a.) -147V
b.) -120V
c.) 51V
Explanation:
a.) Equation for potential difference is the integral of the electrical field from a to b for the voltage V_ba = V(b)-V(a).
b.) The problem becomes easier to solve if you draw out the circuit. Since potential at Q is 0, then Q is at ground. So voltage across V_MQ is the same as potential at V_M.
c.) Same process as part b. Draw out the circuit and you'll see that the potential a point V_N is the same as the voltage across V_NP added with the 2V from the other box.
Honestly, these things take practice to get used to. It's really hard to explain this.
Answer:
μ=0.329, 2.671 turns.
Explanation:
(a) ln(T2/T1)=μβ β=angle of contact in radians
take T2 as greater tension value and T1 smaller, otherwise the friction would be opposite.
T2=5000 lb and T1=80 lb
we have two full turns which makes total angle of contact=4π radians
μ=ln(T2/T1)/β=(ln(5000/80))/4π
μ=0.329
(b) using the same relation as above we will now compute the angle of contact.
take greater tension as T2 and smaller as T1.
T2=20000 lb T1=80 lb μ=0.329
β=ln(20000/80)/0.329=16.7825 radians
divide the angle of contact by 2π to obtain number of turns.
16.7825/2π =2.671 turns
Answer:
modulus =3.97X10^6 Ib/in^2, Poisson's ratio = 0.048
Explanation:
Modulus is the ratio of tensile stress to tensile strain
Poisson's ratio is the ratio of transverse contraction strain to longitudinal extension strain within the direction of the stretching force
And contraction occur from 0.6 in x 0.6 in to 0.599 in x 0.599 in while 2 in extended to 2.007, with extension of 0.007 in
Answer:
Step 1 of 3
Case A:
AISI 1018 CD steel,
Fillet radius at wall=0.1 in,
Diameter of bar
From table deterministic ASTM minimum tensile and yield strengths for some hot rolled and cold drawn steels for 1018 CD steel
Tensile strength
Yield strength
The cross section at A experiences maximum bending moment at wall and constant torsion throughout the length. Due to reasonably high length to diameter ratio transverse shear will be very small compared to bending and torsion.
At the critical stress elements on the top and bottom surfaces transverse shear is zero
Explanation:
See the next steps in the attached image