Answer:
hope it is use full to you
Explanation:
The gas constant is denoted by the symbol R or R. It is equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole, i.e. the pressure–volume product, rather than energy per temperature increment per particle.
it is a physical constant that is featured in many fundamental equations in the physical sciences, such as the ideal gas law, the Arrhenius equation, and the Nernst equation. As a consequence, the value of the gas constant is also exactly defined.
The width of the cuvette is important in the spectrophotometric analysis since wider cuvette<span> translates to more absorbing species present in the path where light passes, hence more absorbance is read in the analysis. other factors include the concentration of the sample and the species itself present.</span>
Hydrogen gas and oxygen gas react to form liquid water according to the following equation:
2H₂ + O₂ → 2H₂O
a. Converting our given masses of each gas to moles, we have:
(25 g H2)/(2 × 1.008 g/mol) = 12.4 mol H2; and
(25 g O2)/(2 × 15.999 g/mol) = 0.781 mol O2.
From the equation, two moles of H2 react with every one mole of O2. To fully react with 12.4 moles of H2, as we have here, one would need 6.2 moles of O2, which is far more than what we're actually given. Thus, the oxygen is our limiting reactant, and as such it will be the first reactant to run out.
b. Since O2 is our limiting reactant, we use it for determining how much product, in this case, H2O, is produced. From the equation, there is a 1:1 molar ratio between O2 and H2O. Thus, the number of moles of H2O produced will be the same as the number of moles of O2 that react: 0.781 moles of H2O. The mass of water produced would be (0.781 mol H2O)(18.015 g/mol) ≈ 14 grams of water (the answer is given to two significant figures).
c. Since the hydrogen reacts with the oxygen in a 2:1 ratio, twice the number of moles of oxygen in hydrogen is consumed: 0.781 mol O2 × 2 = 1.562 mol H2. Since we began with 12.4 moles of H2, the remaining amount of excess H2 would be 12.4 - 1.562 = 10.838 mol H2. The mass of the excess hydrogen reactant would thus be (10.838 mol H2)(2 × 1.008 g/mol) ≈ 22 grams of hydrogen gas (the answer is given to two significant figures).
Answer:
second blank is "partially"
Explanation:
40 the map below shows a part of Earth’s surface. Points A through D are locations is on the ocean floor.