Answer:
the answer is 12 because if your magnetic value and Electric field is 3.2 the answer will be 12
Answer:
a) The magnitude of the magnetic field = 7.1 mT
b) The direction of the magnetic field is the +z direction.
Explanation:
The force, F on a current carrying wire of current I, and length, L, that passes through a magnetic field B at an angle θ to the flow of current is given by
F = (B)(I)(L) sin θ
F/L = (B)(I) sin θ
For this question,
(F/L) = 0.113 N/m
B = ?
I = 16.0 A
θ = 90°
0.113 = B × 16 × sin 90°
B = 0.113/16 = 0.0071 T = 7.1 mT
b) The direction of the magnetic field will be found using the right hand rule.
The right hand rule uses the first three fingers on the right hand (the thumb, the pointing finger and the middle finger) and it predicts correctly that for current carrying wires, the thumb is in the direction the wire is pushed (direction of the force; -y direction), the pointing finger is in the direction the current is flowing (+x direction), and the middle finger is in the direction of the magnetic field (hence, +z direction).
C is the diffraction angle.... step by step explanation= I think it’s that I might be wrong lol
Refer to the diagram shown below.
The hoist is in static equilibrium supported by tensions in the two ropes.
For horizontal force balance, obtain
T₃ cos 50 = T₂ cos 38
0.6428T₃ = 0.788T₂
T₃ = 1.2259T₂ (1)
For vertical force balance, obtain
T₂ sin 38 + T₃ sin 50 = 350
0.6157T₂ + 0.766T₃ = 350 (2)
Substitute (1) into (2).
0.6157T₂ + 0.766(1.2259T₂) = 350
1.5547T₂ = 350
T₂ = 225.124 N
T₃ = 1.2259(225.124) = 275.979
Answer:
T₂ = 225.12 N
T₃ = 275.98 N