Power = work/time
= 500/10
= 50J/s or 50 watt
Answer:
We are given x= bt +ct²
So
A. bxt= m
Because m/s*s= m
So b= m/s and c= m/s²
B.
x= bt-ct²
So at x=0 t=0
x=0 t= 2
We have
bt = ct² so t = b/c at x= 0
So b-2ct= 0
B. To find velocity we use
dx / dt = b - 2 Ct
C. At rest wen V= 0
We have t= b/2c
D. To find acceleration we use
dv / dt = - 2C
Answer:
The focal length of the lens is 34.047 cm
The power of the needed corrective lens is 2.937 diopter.
Explanation:
Distance of the object from the lens,u = 26 cm
Distance of the image from the lens ,v= -110 cm
(Image is forming on the other side of the lens)
Since ,lens of the human eye is converging lens,convex lens.
Using a lens formula:


f = 34.047 cm = 0.3404 m
Power of the lens = P

Potential energy = (weight) x (height)
After the car has been raised 2.5 meters, it has
(11,000) x (2.5) = 27,500 Joules
MORE potential energy than it had before it was lifted.
That's the energy that has to come from the work you do to lift it.
Since no mechanical process is ever 100% efficient, the work required
to accomplish this task is <em>at least 27,500 joules</em>.
Answer: A)30V. First find the current of the circuit. I=V/R(total resistance). So I=60/120=0.5. Now to find voltage drop in R3 use ohms law as given. V(of 3)=(0.5)(60)=30V