Answer:
The intermolecular forces between CO3^2- and H2O molecules are;
1) London dispersion forces
2) ion-dipole interaction
3) hydrogen bonding
Explanation:
Intermolecular forces are forces of attraction that exits between molecules. These forces are weaker in comparison to the intramolecular forces, such as the covalent or ionic bonds between atoms in a molecule.
Considering CO3^2- and H2O, we must remember that hydrogen bonds occur whenever hydrogen is bonded to a highly electronegative atom such as oxygen. The carbonate ion is a hydrogen bond acceptor.
Also, the London dispersion forces are present in all molecules and is the first intermolecular interaction in molecular substance. Lastly, ion-dipole interactions exists between water and the carbonate ion.
█ Answer <span>█
Electrons and neutrons are both sub-atomic particles.
</span><span>Hope that helps! ★ <span>If you have further questions about this question or need more help, feel free to comment below or leave me a PM. -UnicornFudge aka Nadia </span></span><span>
</span>
A: 2H₂ + O₂ → 2H₂O
H: 4 H:4
O: 2 O: 2
The equation is balanced.
B. 2S + 3O₂ → 2SO₃
S: 2 S: 2
O: 6 O: 6
The equation is balanced.
C. Li + Cl₂ → LiCl
Li: 1 Li: 1
Cl: 2 Cl: 1
The equation is not balanced.
2Li + Cl₂ → 2LiCl
Li: 2 Li: 2
Cl: 2 Cl: 2
D: 2K + 2H₂O → H₂ + 2KOH
K: 2 K: 2
H: 4 H: 4
O: 2 O: 2
The equation is balanced.
E: 2Fe + Cu(NO₃)₂ → 2Cu + Fe(NO₃)₂
Fe: 2 Fe: 1
Cu: 1 Cu: 2
N: 2 N: 2
O: 6 O: 6
The equation is not balanced.
2Fe + 2Cu(NO₃)₂ → 2Cu + 2Fe(NO₃)₂
Fe: 2 Fe: 2
Cu: 2 Cu: 2
N: 4 N: 4
O: 12 O: 12
The following equations that are balanced are A, B, and D.
Answer:
9.17 g
Explanation:
1) Calculate mols of PCl5
PCl5 (aq) + 4H2O (l) ⟶ H3PO4 (aq) + 5HCl (aq)
Mass of PCl5: 26.5g
Molar Mass of PCl5 208.24g/mol
Mol of PCl5 = Mass PCl5 /Molar mass PCl5 = 26.5g / (208.24g/mol) = 0.127257011 mol
2) Calculate mols of water needed to react
Mols of H2O per 1 Mols of PCl5 = 4 (because 4 water is needed to Phosphorus pentachloride).
Mols of H2O = Mol of PCl5 * 4 = 0.127257011 * 4 = 0.509028044 mols
3) Calculate Grams of water needed to react
Mols of H2O = 0.509028044 mols
Molar Mass of H2O = 18.015 g/mol
Mass of H2O = Mols of H2O * Molar Mass of H2O
= 0.509028044 mols* 18.015 g/mol = 9.17014021 g
sf = 3
9.17 g
Answer:
2.7 g/cm³
Explanation:
Step 1: Calculate the mass of kerosene
The mass of the full beaker (mFB) is equal to the sum of the masses of the empty beaker (mEB) and the mass of the kerosene (mK).
mFB = mEB + mK
mK = mFB - mEB
mK = 60 g - 20 g = 40 g
Step 2: Calculate the density of kerosene
Density (ρ) is an intrinsic property of matter. It can be calculated as the quotient between the mass of kerosene and its volume.
ρ = m/V
ρ = 40 g/15 cm³ = 2.7 g/cm³