Answer:
Q = 63,827.5 W
Explanation:
Given:-
- The dimensions of plate A = ( 10 mm x 1 m )
- The fluid comes at T_sat , 1 atm.
- The surface temperature, T_s = 75°C
Find:-
Determine the total condensation rate of water vapor onto the front surface of a vertical plate
Solution:-
- Assuming drop-wise condensation the heat transfer coefficient for water is given by Griffith's empirical relation for T_sat = 100°C.
h = 255,310 W /m^2.K
- The rate of condensation (Q) is given by Newton's cooling law:
Q = h*As*( T_sat - Ts )
Q = (255,310)*( 0.01*1)*( 100 - 75 )
Q = 63,827.5 W
Answer:
Out of the four options provided
option A. actuator
is correct
Explanation:
An actuator is the only device out of the four mentioned devices that provides power and ensures the motion in it in order to manipulate the movement of the moving parts of the damper or a valve used whereas others like ratio regulator are used to regulate air or gas ratio and none mof the 3 remaining options serves the purpose
Answer and Explanation:
In any experiment, the observed values are the actual values obtained in any experiment.
The calculated values are the values that are measured by using the observed values in a formula.
The observed values are primary values whereas the calculated values are the secondary values as calaculations are made using observed values.
Yes, if the observed values are of low accuracy.
The values should be recorded with proper care and attention in order to avoid any error.
Answer:
(a) E = 0 N/C
(b) E = 0 N/C
(c) E = 7.78 x10^5 N/C
Explanation:
We are given a hollow sphere with following parameters:
Q = total charge on its surface = 23.6 μC = 23.6 x 10^-6 C
R = radius of sphere = 26.1 cm = 0.261 m
Permittivity of free space = ε0 = 8.85419 X 10−12 C²/Nm²
The formula for the electric field intensity is:
E = (1/4πεo)(Q/r²)
where, r = the distance from center of sphere where the intensity is to be found.
(a)
At the center of the sphere r = 0. Also, there is no charge inside the sphere to produce an electric field. Thus the electric field at center is zero.
<u>E = 0 N/C</u>
(b)
Since, the distance R/2 from center lies inside the sphere. Therefore, the intensity at that point will be zero, due to absence of charge inside the sphere (q = 0 C).
<u>E = 0 N/C</u>
(c)
Since, the distance of 52.2 cm is outside the circle. So, now we use the formula to calculate the Electric Field:
E = (1/4πεo)[(23.6 x 10^-6 C)/(0.522m)²]
<u>E = 7.78 x10^5 N/C</u>