Answer:
2452.79432 m/s
Explanation:
m = Mass of ice
= Latent heat of steam
= Specific heat of water
= Latent heat of ice
v = Velocity of ice
= Change in temperature
Amount of heat required for steam

Heat released from water at 100 °C

Heat released from water at 0 °C

Total heat released is

The kinetic energy of the bullet will balance the heat

The velocity of the ice would be 2452.79432 m/s
22:54 is the answer you are looking for
Answer:
Here is the answer.
Explanation:
Balanced forces- they are those forces that produce 0 resultant forces.
therefore, on applying a balanced force on the object, it wouldn't result in any change, as resultant force would be 0.
The correct expression for the maximum speed of the object during its motion is
.
<h3>
Maximum speed of the object</h3>
The maximum speed of the object is determined using the following formulas;
v(max) = Aω
where;
- A is the amplitude of the motion
- ω is angular speed
The maximum speed of the object can also be obtained from the maximum net force on the object,
F = ma
where;
- F is the maximum net force
- a is the acceleration
- m is mass of the object
F = m(v/t)
mv = Ft
v = Ft/m
Thus, the correct expression for the maximum speed of the object during its motion is
.
Learn more about maximum speed here: brainly.com/question/4931057
θ = angle of the incline surface from the horizontal surface = 25⁰
μ = Coefficient of friction = 0.15
m = mass of the person = 65 kg
= kinetic frictional force acting on the person as he slides down
mg = weight of the person acting in down direction
= normal force by the incline surface on the person
the free body diagram showing the forces acting on the person is given as