Look at your speedometer for say, a couple of seconds. Depends on whether or not you are moving on average at a constant speed (speedo won't change much) or whether you're in a polluting traffic jam/queue in which case the speedo will go up and down like a yo yo. to determine the speed, you'd probably need to plot the speed on the speedo against the times at which the speedo speeds were read from the speedo.
Answer:at 21.6 min they were separated by 12 km
Explanation:
We can consider the next diagram
B2------15km/h------->Dock
|
|
B1 at 20km/h
|
|
V
So by the time B1 leaves, being B2 traveling at constant 15km/h and getting to the dock one hour later means it was at 15km from the dock, the other boat, B1 is at a distance at a given time, considering constant speed of 20km/h*t going south, where t is in hours, meanwhile from the dock the B2 is at a distance of (15km-15km/h*t), t=0, when it is 8pm.
Then we have a right triangle and the distance from boat B1 to boat B2, can be measured as the square root of (15-15*t)^2 +(20*t)^2. We are looking for a minimum, then we have to find the derivative with respect to t. This is 5*(25*t-9)/(sqrt(25*t^2-18*t+9)), this derivative is zero at t=9/25=0,36 h = 21.6 min, now to be sure it is a minimum we apply the second derivative criteria that states that if the second derivative at the given critical point is positive it means here we have a minimum, and by calculating the second derivative we find it is 720/(25 t^2 - 18 t + 9)^(3/2) that is positive at t=9/25, then we have our answer. And besides replacing the value of t we get the distance is 12 km.
Answer:
(a) m = 1.6 x 10²¹ kg
(b) K.E = 2.536 x 10¹¹ J
(c) v = 7.12 x 10⁵ m/s
Explanation:
(a)
First we find the volume of the continent:
V = L*W*H
where,
V = Volume of Slab = ?
L = Length of Slab = 4450 km = 4.45 x 10⁶ m
W = Width of Slab = 4450 km = 4.45 x 10⁶ m
H = Height of Slab = 31 km = 3.1 x 10⁴ m
Therefore,
V = (4.45 x 10⁶ m)(4.45 x 10⁶ m)(3.1 x 10⁴ m)
V = 6.138 x 10¹⁷ m³
Now, we find the mass:
m = density*V
m = (2620 kg/m³)(6.138 x 10¹⁷ m³)
<u>m = 1.6 x 10²¹ kg</u>
<u></u>
(b)
The kinetic energy will be:
K.E = (1/2)mv²
where,
v = speed = (1 cm/year)(0.01 m/1 cm)(1 year/365 days)(1 day/24 h)(1 h/3600 s)
v = 3.17 x 10⁻¹⁰ m/s
Therefore,
K.E = (1/2)(1.6 x 10²¹ kg)(3.17 x 10⁻¹⁰ m/s)²
<u>K.E = 2.536 x 10¹¹ J</u>
<u></u>
(c)
For the same kinetic energy but mass = 77 kg:
K.E = (1/2)mv²
2.536 x 10¹¹ J = (1/2)(77 kg)v²
v = √(2)(2.536 x 10¹¹ J)
<u>v = 7.12 x 10⁵ m/s</u>
Answer:
h = 3.3 m (Look at the explanation below, please)
Explanation:
This question has to do with kinetic and potential energy. At the beginning (time of launch), there is no potential energy- we assume it starts from the ground. There, is, however, kinetic energy
Kinetic energy =
m
Plug in the numbers =
(4.0)(
)
Solve = 2(64) = 128 J
Now, since we know that the mechanical energy of a system always remains constant in the absence of outside forces (there is no outside force here), we can deduce that the kinetic energy at the bottom is equal to the potential energy at the top. Look at the diagram I have attached.
Potential energy = mgh = (4.0)(9.8)(h) = 39.2(h)
Kinetic energy = Potential Energy
128 J = 39.2h
h = 3.26 m
h= 3.3 m (because of significant figures)