Answer:
The mass of the another block is 60 kg.
Explanation:
Given that,
Mass of block M= 100 kg
Height = 1.0 m
Time = 0.90 s
Let the mass of the other block is m.
We need to calculate the acceleration of each block
Using equation of motion

Put the value into the formula



We need to calculate the mass of the other block
Using newton's second law
The net force of the block M

....(I)
The net force of the block m

Put the value of T from equation (I)



Put the value into the formula


Hence, The mass of the another block is 60 kg.
Answer:
Option B
Explanation:
<h3>According to Newton's third law, for every reaction there will be equal and opposite reaction</h3>
Here in this case the force of the club hitting the golf ball will be in one direction and the force acting on club due to golf ball will be in opposite direction and magnitude of this force will be same as the magnitude of the force of the club hitting the golf ball
In this case the action will be the force of the club hitting the golf ball and reaction will be the force acting on club due to golf ball
∴ The club pushes against to golf ball with a force equal and opposite to the force of the golf ball on the club
Given parameters:
Initial velocity of Coin = 0m/s
Time taken before coin hits ground = 5.7s
Unknown:
Final velocity of the coin = ?
Velocity is displacement with time. To solve this problem, we have to apply one of the equations of motion.
The fitting one of them here is shown below;
V = U + gt
where;
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
t is the time taken
Here we use positive value of acceleration due to gravity because the coin is falling with the effect of acceleration and not against it.
Now input the parameters and solve;
V = 0 + 9.81 x 5.7
V = 55.917m/s
Therefore, the final velocity is 55.917m/s.