Answer:
The pressure of the gas is:
<u>Doubled</u>
<u></u>
Explanation:
Byole's Law = Pressure of fixed amount of gas is inversely proportional to Volume at constant temperature.
PV = k = constant
P1V1 = P2V2
<u>Charle's Law: </u> The volume of ideal gas at fixed pressure is directly proportional to Pressure.
V/T = constant
V1/T1 = V2/T2
On combinig the charles and byole's law , we get:

Now , According to question :
V2 = V1
T2 = 2(T1)
We have to find the relation between the pressure :
insert the value in the equation


V1 and V1 & T1 and T1 cancels each other,
So we get
P2 = 2 P1
So the new pressure is double of the original pressure
Answer:
18
Explanation:
6 (weights) x 3 (distance) = moment
Answer:
ΔH°_rxn = -195.9 kJ·mol⁻¹
Explanation:
4NH₃(g) + 3O₂(g) ⟶ 2N₂(g) +6H₂O(g)
ΔH°_f/(kJ·mol⁻¹): -45.9 0 0 -241.8
The formula relating ΔH°_rxn and enthalpies of formation (ΔH°_f) is
ΔH°_rxn = ΣΔH°_f(products) – ΣΔH°_f(reactants)
ΣΔH°_f(products) = -6(241.8) = -1450.8 kJ
ΣΔH°_f(reactants) = -4(45.9) = -183.6 kJ
ΔH°_rxn = (-1450.8 + 183.6) kJ = -1267.2 kJ