One simple way to losing weight is by calorie counting. Peter can go to his nutritionist and learn just how much calories he can have as intake per day to lose weight. The nutrition label on any food item lists the calories and their serving sizes. This can be used to keep track of how much calories Peter has taken each day, so as to not go over his daily limit.
Answer:
<em>1,378.9ms²</em>
Explanation:
Given the following
Distance S = 70.6m
Time t = 0.32secs
Initial velocity = 0m/s
Required
Acceleration
Using the equation of motion
S = ut+1/2at²
Substitute
70.6 = 0+1/2a(0.32)²
70.6 = 0.0512a
a = 70.6/0.0512
a = 1,378.9
<em>Hence the acceleration is 1,378.9ms²</em>
At point C because it is at the lowest position.
Answer:
<em>To reverse the direction of an electric current, we simply reverse the voltage either automatically with the help of some switching circuitry or manually by changing the voltage source terminals connection. </em>
Explanation:
For electric current to flow, there must be a potential difference, usually referred to as the voltage. The electric current flow is analogous to the flow of water under the action of a pump, through a series of pipe connections. The voltage is similar to the driving action of the pump, and current flows the same way water flows. The resistance due to drag on the pipe wall is equivalent to electric resistance. For current to flow in the reverse direction, the voltage or rather, the potential difference is changed, causing the current to flow in the opposite direction. This can be done by switching the terminals of the voltage source, or by automatic means. The automatic switching can be done with a transistor based circuitry.
Explanation:
<em>The height of the pendulum is measured from the lowest point it reaches (point 3). </em>
At 1, the kinetic energy of the pendulum is zero (because it is not moving), and it has maximum potential energy.
At 2, the pendulum has both kinetic and potential energy, and how much of each it has depends on its height—smaller the height greater the kinetic energy and lower the potential energy.
At 3, the height is zero; therefore, the pendulum has no potential energy, and has maximum kinetic energy.
At 4, the pendulum again gains potential energy as it climbs back up, Again how much of each forms of energy it has depends on its height.
At 5, the maximum height is reached again; therefore, the pendulum has maximum potential energy and no kinetic energy.
Hope this helps :)