a) An inflated balloon was pressed against a wall after it has been rubbed with a piece of synthetic cloth. It was found that the balloon sticks to the wall. <u>This is because a positive and negative electric charge is produced, therefore the balloon sticks to the wall.</u>
b) When an object is thrown up, it comes back to ground <u>because of gravitational attraction force of earth</u>.
c) Mountaineers suffer nose bleeding at higher altitudes <u>because the oxygen level decreases with increase in altitude, which the body cannot adjust.</u>
d) Foundations of high rise buildings are kept wide <u>because more is the area of contact, less is the pressure efforts. So, foundations are wide so as to decrease the possibility of the building from falling down.</u>
e) Deep sea divers or high altitude fliers wear special suits <u>so as prevent their body from being crushed by the water pressure. Since water pressure is maximum at deep seas and oceans, therefore, more is the risk of being injured.</u>
f) Walls of a dam are thickened near the base <u>so that the dam can handle the kinetic energy pressure and prevent itself from breaking down, which if not, can lead to flooding</u>.
HOPE IT HELPS...
We are given with the expression d = ut + 0.5 at^2 and is asked to express the equation in terms of a. First, we transpose ut to the left side, then we multiply to the equation and divide lastly the resulting equation by t^2. The final expression becomes a = 2(d-ut)/t^2.
Answer:
m1/m2 = 0.51
Explanation:
First to all, let's gather the data. We know that both rods, have the same length. Now, the expression to use here is the following:
V = √F/u
This is the equation that describes the relation between speed of a pulse and a force exerted on it.
the value of "u" is:
u = m/L
Where m is the mass of the rod, and L the length.
Now, for the rod 1:
V1 = √F/u1 (1)
rod 2:
V2 = √F/u2 (2)
Now, let's express V1 in function of V2, because we know that V1 is 1.4 times the speed of rod 2, so, V1 = 1.4V2. Replacing in the equation (1) we have:
1.4V2 = √F/u1 (3)
Replacing (2) in (3):
1.4(√F/u2) = √F/u1 (4)
Now, let's solve the equation 4:
[1.4(√F/u2)]² = F/u1
1.96(F/u2) =F/u1
1.96F = F*u2/u1
1.96 = u2/u1 (5)
Now, replacing the expression of u into (5) we have the following:
1.96 = m2/L / m1/L
1.96 = m2/m1 (6)
But we need m1/m2 so:
1.96m1 = m2
m1/m2 = 1/1.96
m1/m2 = 0.51
Answer:
When an electromagnetic wave passes from space to matter, some part of the energy is absorbed by the matter and it increases its energy. The wave may reflect and some part may pass through the matter depending on the amount of energy they have. The amplitude of the wave decreases if some parts of it are reflected.
Answer:
<h2>
D. X, Y, Z, W</h2>
Explanation: just took the quiz :)