Answer:
C
Explanation:
F=ma
given solution
v=12m/s a=v/t
s=6 sec =12m/s÷6sec
=2m/s^2 then we get acceleration now we will find the mass. first derive the the formula of mass by crisis cross then you will get this formula which is m=F/a
=36÷2
= 18
Answer:

Explanation:
When a spring is compressed, the force exerted by the spring is given by:

where
k is the spring constant
x is the compression of the spring
In this problem we have:
k = 52 N/m is the spring constant
x = 43 cm = 0.43 m is the compression
Therefore, the force exerted by the spring on the dart is

Now we can apply Newton' second law of motion to calculate the acceleration of the dart:

where
F = 22.4 N is the force exerted on the dart by the spring
m = 75 g = 0.075 kg is the mass of the dart
a is its acceleration
Solving for a,

When a force causes a body to move, work is done on the object by the force. Work is the measure of the energy transfer when a force 'F' moves an object through a distance 'd'. So we say that energy is transferred from one energy store to another when work is done, and therefore, energy transferred = work done.
Answer:
2. A 1 litre mug of hot chocolate at 75 degrees.
Explanation:
Thermal energy is directly proportional to mass, so as the mass increases, the thermal energy of the substance increases as well.
Answer:
move at constant velocity.
Explanation:
Newton's first law (also known as law of inertia) states that:
"when the net force acting on an object is zero, the object will keep its state of rest or if it is moving, it will continue moving at constant velocity".
In the case of the probe, friction in deep space is negligible, therefore when the engine is shut down, there are no more forces acting on the probe: the net force therefore will be zero, so the probe will move at constant velocity.