1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatyana61 [14]
3 years ago
10

An object dropped on Planet P falls 144 m in 6 seconds. What is the gravitational acceleration of Planet P ? Gravitational accel

eration of Planet P is m/s2 .
Physics
1 answer:
Tju [1.3M]3 years ago
7 0

Answer:

The gravitational acceleration of the planet is, g = 8 m/s²

Explanation:

Given data,

The distance the object falls, s = 144 m

The time taken by the object is, t = 6 s

Using the III equations of motion

                  S = ut + ½ gt²

∴                 g = 2S/t²

Substituting the given values,

                   g = 2 x 144 /6²

                      = 8 m/s²

Hence, the gravitational acceleration of the planet is, g = 8 m/s²

You might be interested in
Gravity on the surface of the moon is only 1/6 as strong as gravity on the Earth. What is the weight of a 19 kg object on the Ea
Dahasolnce [82]

The weight of anything in any place is

         (mass of the thing) x (acceleration of gravity in that place).

-- On Earth, the acceleration of gravity is about  9.807 m/s²

Weight of 19 kg of mass is  (19 kg) x (9.807 m/s²) =  <em>186.3 newtons</em>


-- On the Moon, the acceleration of gravity is about 1.623 m/s²

Weight of the same 19 kg of mass is  (19 kg) x (1.623 m/s²) = <em>30.8  newtons</em>

7 0
3 years ago
A 45.0 g hard-boiled egg moves on the end of a spring with force constant 25.0 N/m. Its initial displacement 0.500 m. A damping
leva [86]

Answer:

0.02896 kg/s

Explanation:

A_1 = Initial displacement = 0.5 m

A21 = Final displacement = 0.1 m

t = Time taken = 0.5 s

m = Mass of object = 45 g

Displacement is given by

x=Ae^{-\dfrac{b}{2m}t}cos(\omega t+\phi)

At maximum displacement

cos(\omega t+\phi)=1

\\\Rightarrow A_2=A_1e^{-\dfrac{b}{2m}t}\\\Rightarrow \dfrac{A_1}{A_2}=e^{\dfrac{b}{2m}t}\\\Rightarrow ln\dfrac{A_1}{A_2}=\dfrac{b}{2m}t\\\Rightarrow b=\dfrac{2m}{t}\times ln\dfrac{A_1}{A_2}\\\Rightarrow b=\dfrac{2\times 0.045}{5}\times ln\dfrac{0.5}{0.1}\\\Rightarrow b=0.02896\ kg/s

The magnitude of the damping coefficient is 0.02896 kg/s

6 0
3 years ago
A student throws a baseball horizontally at 25 meters per second from a cliff 45 meters above the level ground. Approximately ho
Delicious77 [7]
First, calculate how long the ball is in midair. This will depend only on the vertical displacement; once the ball hits the ground, projectile motion is over. Since the ball is thrown horizontally, it originally has no vertical speed. 
t = time vi = initial vertical speed = 0m/s g = gravity = -9.8m/s^2 y = vertical displacement = -45m 
y = .5gt^2 [Basically, in this equation we see how long it takes the ball to fall 45m] -45m = .5 (-9.8m/s^2) * t^2 t = 3.03 s 
Now we know that the ball is midair for 3.03s. Since horizontal speed is constant we can simply use: 
x = horizontal displacement v = horizontal speed = 25m/s t = time = 3.03s 
x = v*t x = 25m/s * 3.03s = 75.76 m Thus, the ball goes about 75 or 76 m from the base of the cliff.
8 0
3 years ago
Magnet A has twice the magnetic field strength of magnet B and pulls on magnet B with a force of 100 N. The amount of force that
son4ous [18]

The force exerted by the magnetic in terms of the magnetic field is,

F\propto B

Where B is the magnetic fied strength and F is the force.

Thus, if the magnetic A has twice magnetic field strength than the magnet B,

Then,

B_A=2B_B

Thus, the force exerted by the magnet B is,

\begin{gathered} F_B\propto B_B \\ F_B\propto\frac{B_A}{2} \\ F_B=\frac{F_A}{2} \\ F_B=\frac{100}{2} \\ F_B=50\text{ N} \end{gathered}

Thus, the force exerted by the magnet B on magnet A is 50 N.

The force exerted by the magnet A exerts on the magnet B is exactly 100 N as given.

Hence, the option B is the correct answer.

3 0
11 months ago
Fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)= 2.20 mm cos[(
bezimeni [28]

Answer

given,

y(x,t)= 2.20 mm cos[( 7.02 rad/m )x+( 743 rad/s )t]

length of the rope = 1.33 m

mass of the rope = 3.31 g

comparing the given equation from the general wave equation

y(x,t)= A cos[k x+ω t]

A is amplitude

now on comparing

a) Amplitude  = 2.20 mm

b) frequency =

     f = \dfrac{\omega}{2\pi}

     f = \dfrac{743}{2\pi}

          f = 118.25 Hz

c) wavelength

        k= \dfrac{2\pi}{\lambda}

        \lambda= \dfrac{2\pi}{k}

        \lambda= \dfrac{2\pi}{7.02}

        \lambda= 0.895\ m

d) speed

         v = \dfrac{\omega}{k}

         v = \dfrac{743}{7.02}

                v = 105.84 m/s

e) direction of the motion will be in negative x-direction

f) tension

  T = \dfrac{v^2\ m}{L}

  T = \dfrac{(105.84)^2\times 3.31 \times 10^{-3}}{1.33}

      T = 27.87 N

g) Power transmitted by the wave

  P = \dfrac{1}{2}m\ v \omega^2\ A^2

  P = \dfrac{1}{2}\times 0.00331\times 105.84\times 743^2\ 0.0022^2

      P = 0.438 W

5 0
3 years ago
Other questions:
  • An object is at rest on an inclined plane. In which direction does the static friction force act?
    14·1 answer
  • How long is the image of a metrestick formed by a plane mirror?
    7·1 answer
  • If the x-component of a vector is 17, and the angle between the vector and the x-axis is 46 degrees, what is the magnitude of th
    14·2 answers
  • Julie is making a capacitor with an area of 2.5 × 10–5 m2. The capacitance is 5.5 pF. What is the distance between the plates?
    11·1 answer
  • An object with a temperature of 0 Kelvin would not emit radiation.<br> a. True<br> b. False
    12·2 answers
  • What forces cause the Sun’s magnetic field to become both stronger and more tangled
    10·1 answer
  • Dr. Tate and Dr. Ramirez are observing the effects of a type of solar activity that has reached the planet Jupiter. What solar a
    9·2 answers
  • If a force of 24 N is applied to an object with a mass of 5 kg, the object will accelerate at _____ m/s2
    12·1 answer
  • Which source would provide the most reliable information about the safety of nuclear power plants?
    13·1 answer
  • What two quantities must stay the same in order for an object to have a constant velocity? A) The speed and kinetic energy must
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!