1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11111nata11111 [884]
3 years ago
13

Determine the angular speed, in rad/s of:

Physics
1 answer:
ryzh [129]3 years ago
6 0

Answer:

Explanation:

A. The earth about its axis:

The earth makes one revolution in 24 hours. to know the number of revolutions per second it makes, we need to convert hours to seconds and the revolution to rad.

\frac{1 rev}{24hours}\times \frac{1 hr}{3600s}\times \frac{2\pi}{1}= 7.27 \times10^-5 rad/s

B. The minute hand of the clock makes one revolution in 60 minutes

To convert this to rad per second, we have

\frac{1 rev}{60mins}\times \frac{1 min}{60s}\times \frac{2\pi}{1}= 1.745 \times10^-3rad/s

C. The hour hand of  a clock completes one revolution in 12 hours

\frac{1 rev}{12hours}\times \frac{1 hr}{3600s}\times \frac{2\pi}{1}= 1.454 \times10^-4 rad/s

D. an egg beater turning at 300 rpm.

\frac{300 rev}{1minute}\times \frac{1 min}{60s}\times \frac{2\pi}{1}= 7.27 \times10^-5 rad/s=0.0218rad/s

You might be interested in
1. At a location in Europe, it is necessary to supply 1000 kW of 60-Hz power. Only power sources available operate at 50 Hz. It
Klio2033 [76]

Answer:

Explanation:

From the given information:

The speed of a synchronous motor in relation to its frequency can be represented with the formula:

n_{sm}= \dfrac{120f_{se}}{P}

where,

the electrical frequency f_{se} is measured in Hz

the number of poles = P

For us to estimate the number of poles to have 50 Hz - 60 Hz Power, then we need to relate the frequencies of the above equation.

i.e

\dfrac{120(50 \ Hz)}{P_1}= \dfrac{120( 60 \Hz)}{P_2} \\ \\ \dfrac{6000 \ Hz}{P_1}= \dfrac{7200 \ Hz}{P_2} \\ \\ \dfrac{P_2}{P_1}=\dfrac{7200}{6000} \\ \\ \\ \dfrac{P_2}{P_1}= \dfrac{12}{10}

Thus, we can conclude that 10 poles synchronous motor is attached with 12 poles synchronous generator in order to convert 50 Hz to 60 Hz power.

3 0
3 years ago
At the moment t = 0, a 20.0 V battery is connected to a 5.00 mH coil and a 6.00 Ω resistor. (a) Immediately thereafter, how does
insens350 [35]

(a) On the coil: 20 V, on the resistor: 0 V

The sum of the potential difference across the coil and the potential difference across the resistor is equal to the voltage provided by the battery, V = 20 V:

V = V_R + V_L

The potential difference across the inductance is given by

V_L(t) = V e^{-\frac{t}{\tau}} (1)

where

\tau = \frac{L}{R}=\frac{0.005 H}{6.00 \Omega}=8.33\cdot 10^{-4} s is the time constant of the circuit

At time t=0,

V_L(0) = V e^0 = V = 20 V

So, all the potential difference is across the coil, therefore the potential difference across the resistor will be zero:

V_R = V-V_L = 20 V-20 V=0

(b) On the coil: 0 V, on the resistor: 20 V

Here we are analyzing the situation several seconds later, which means that we are analyzing the situation for

t >> \tau

Since \tau is at the order of less than milliseconds.

Using eq.(1), we see that for t >> \tau, the exponential becomes zero, and therefore the potential difference across the coil is zero:

V_L = 0

Therefore, the potential difference across the resistor will be

V_R = V-V_L = 20 V- 0 = 20 V

(c) Yes

The two voltages will be equal when:

V_L = V_R (2)

Reminding also that the sum of the two voltages must be equal to the voltage of the battery:

V=V_L +V_R

And rewriting this equation,

V_R = V-V_L

Substituting into (2) we find

V_L = V-V_L\\2V_L = V\\V_L=\frac{V}{2}=10 V

So, the two voltages will be equal when they are both equal to 10 V.

(d) at t=5.77\cdot 10^{-4}s

We said that the two voltages will be equal when

V_L=\frac{V}{2}

Using eq.(1), and this last equation, this means

V e^{-\frac{t}{\tau}} = \frac{V}{2}

And solving the equation for t, we find the time t at which the two voltages are equal:

e^{-\frac{t}{\tau}}=\frac{1}{2}\\-\frac{t}{\tau}=ln(1/2)\\t=-\tau ln(0.5)=-(8.33\cdot 10^{-4} s)ln(0.5)=5.77\cdot 10^{-4}s

(e-a) -19.2 V on the coil, 19.2 V on the resistor

Here we have that the current in the circuit is

I_0 = 3.20 A

The problem says this current is stable: this means that we are in a situation in which t>>\tau, so the coil has no longer influence on the circuit, which is operating as it is a normal circuit with only one resistor. Therefore, we can find the potential difference across the resistor using Ohm's law

V=I_0 R = (3.20 A)(6.0 \Omega)=19.2 V

Then the battery is removed from the circuit: this means that the coil will discharge through the resistor.

The voltage on the coil is given by

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

which means that it is maximum at the moment when the battery is disconnected, when t=0:

V_L(0)=.V

And V this time is the voltage across the resistor, 19.2 V (because the coil is now connected to the resistor, not to the battery). So, the voltage across the coil will be -19.2 V, and the voltage across the resistor will be the same in magnitude, 19.2 V (since the coil and the resistor are connected to the same points in the circuit): however, the signs of the potential difference will be opposite.

(e-b) 0 V on both

After several seconds,

t>>\tau

If we use this approximation into the formula

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

We find that

V_L = 0

And since now the resistor is directly connected to the coil, the voltage in the resistor will be the same as the coil, so 0 V. This means that the coil has completely discharged, and current is no longer flowing through the circuit.

7 0
3 years ago
A 0.290 kg potato is tied to a string with length 2.50 m, and the other end of the string is tied to a rigid support. The potato
Sergeu [11.5K]

Answer:

A) The speed of the potato at the lowest point of its motion is 7.004 m/s

B) The tension on the string at this point is 8.5347 N

Explanation:

Here we have that the height from which the potato is allowed to swing  is 2.5 m

Therefore we have ω₂² = ω₁² + 2α(θ₂ - θ₁)

Where:

ω₂ = Final angular velocity

ω₁ = Initial angular velocity = 0 rad/s

α = Angular acceleration

θ₂ = Final angle position

θ₁ = Initial angle position

However, we have potential energy of the potato

= Mass m×Gravity g× Height h

= 0.29×9.81×2.5 = 7.1125 J

At he bottom of the swing, the potential energy will convert to kinetic energy as follows

K.E. = P.E. = 7.1125 J

1/2·m·v² = 7.1125 J

Therefore,

v² = 7.1125 J/(1/2×m) = 7.1125 J/(1/2×0.290) = 49.05

∴ v = √49.05 = 7.004 m/s

B) Here we have the tension given by

Tension T in the string = weight of potato + Radial force of motion

Weight of potato = mass of potato × gravity

Radial force of motion of potato = mass of potato × α,

where α = Angular acceleration = v²/r and r = length of the string

∴ Tension T in the string = m×g + m×v²/r = 0.290×(9.81 + 7.004²/2.5)

T = 8.5347 N

4 0
3 years ago
Read 2 more answers
HELP I RLLY NEED HELP WITH THIS PLEASE HELP ME WHAT IS PHYSICAL SCIENCE ANYBODY???
Paul [167]

The sciences concerned with the study of inanimate natural objects, including physics, chemistry, astronomy, and related subjects.

7 0
3 years ago
A graph of angular position v. time has the following equation:
Harman [31]

Answer:

you can simply answer by derivative = 3.5x^2+25x+250-y=0 you can derivate this eqn 7x +25-1=0 7x=24 yo u can divide you get it

5 0
3 years ago
Other questions:
  • When introduced into a region where an electric field is present, an electron with initial velocity will eventually move?
    6·1 answer
  • Calculate the hydrostatic difference in blood pressure between the brain and the foot in a person of height 1.93 m. The density
    10·1 answer
  • What happens to the speed of water waves as it enters a shallow medium .
    10·1 answer
  • you apply the same amount of heat to five grams of water and five grams of aluminum the temperature of the aluminum increases mo
    12·2 answers
  • "A 0.4 kg mass, attached to the end of a 0.75 m string, is whirled around in a circular horizontal path. If the maximum tension
    6·2 answers
  • The speed of a bullet of mass 20 g is 216 kilometre-per-hour what is kinetic energy in joules​
    13·1 answer
  • A parallel-plate capacitor is made from two aluminum-foil sheets, each 3.0 cm wide and 5.00 m long. Between the sheets is a mica
    12·1 answer
  • Help please!! will give brainly for full answers
    6·1 answer
  • A ball was rolling downhill at 2 m/s. After 5s, it was rolling at 90 m/s. What is its acceleration?
    12·1 answer
  • Suppose a piano tuner stretches a steel piano wire 7.5 mm. The wire was originally 0.975 mm in diameter, 1.45 m long, and has a
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!