You would use the formula for Boyle's Law:
(P1) (V1) = (P2) (V2)
(101.5) (2.0) = (P2?) (.75)
*P2 = 270kPa (You're allowed 2 significant figures)
P = Pressure
V = Volume
Answer:
Electrons at the outermost energy level of an atom are called valence electrons. They determine many of the properties of an element. That's because these electrons are involved in chemical reactions with other atoms. Shared electrons bind atoms together to form chemical compounds.
Explanation:
Answer:
The concept of lewis acids and bases can explain the acidic nature of CO2. A lewis acid is a compound which can accept an electron pair whereas a lewis base is a compound which can donate an electron pair. CO2 acts as a lewis acid.
Answer:
<em>293.99 g </em>
OR
<em>0.293 Kg</em>
Explanation:
Given data:
Lattice energy of Potassium nitrate (KNO3) = -163.8 kcal/mol
Heat of hydration of KNO3 = -155.5 kcal/mol
Heat to absorb by KNO3 = 101kJ
To find:
Mass of KNO3 to dissolve in water = ?
Solution:
Heat of solution = Hydration energy - Lattice energy
= -155.5 -(-163.8)
= 8.3 kcal/mol
We already know,
1 kcal/mol = 4.184 kJ/mole
Therefore,
= 4.184 kJ/mol x 8.3 kcal/mol
= 34.73 kJ/mol
Now, 34.73 kJ of heat is absorbed when 1 mole of KNO3 is dissolved in water.
For 101 kJ of heat would be
= 101/34.73
= 2.908 moles of KNO3
Molar mass of KNO3 = 101.1 g/mole
Mass of KNO3 = Molar mass x moles
= 101.1 g/mole x 2.908
= 293.99 g
= 0.293 kg
<em><u>293.99 g potassium nitrate has to dissolve in water to absorb 101 kJ of heat. </u></em>
Answer:
52.54 %
Explanation:
Half life = 29 years
Where, k is rate constant
So,
The rate constant, k = 0.023902 hour⁻¹
From 1964 to 1991:
Time = 27 years
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
So,
<u>The strontium-90 remains in the bone = 52.54 %</u>