1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arada [10]
2 years ago
7

Write a single statement to print: user_word,user_number. Note that there is no space between the comma and user_number. Sample

output with inputs: 'Amy' 5
Engineering
1 answer:
kykrilka [37]2 years ago
8 0

Answer:

cout<<"''<<user_word<<"' "<<user_number;

Explanation:

The above question was answered using C++ programming language.

The keyword cout represents print and it carries out print operation only.

It prints all variable in front of it.

Assume the values of user_word and user_number to be Charles and 20, respectively.

The output of the above instruction would be

'Charles' 20 just as it is in the sample output in the question.

In java programming language, it is

System.out.print("'"+user_word+"' "+user_number);

In Qbasic, it is

PRINT "'"+user_word+"' "+ user_number

You might be interested in
An ideal reheat Rankine cycle with water as the working fluid operates the boiler at 15,000 kPa, the reheater at 2000 kPa, and t
solniwko [45]

Answer:

See the explanation below.

Explanation:

First find the enthalpies h₁, h₂, h₃, h₄, h₅, and h₆.

Find h₁:

Using Saturated Water Table and given pressure p₁ = 100 kPa

h₁ = 417.5 kJ/kg

Find h₂:

In order to find h₂, add the w_{p} to h₁, where  w_{p}  is the work done by pump and h₁ is the enthalpy computed above h₁ = 417.5 kJ/kg.

But first we need to compute  w_{p} To computer  

Pressures:

p₁ = 100 kPa

p₂ = 15,000 kPa

and

Using saturated water pressure table, the volume of water v_{f} = 1.0432

Dividing 1.0432/1000 gives us:

Volume of water = v₁ =  0.001043 m³/kg

Compute the value of h₂:

h₂ = h₁ + v₁ (p₂ - p₁)

    = 417.5 kJ/kg + 0.001043 m³/kg ( 15,000 kPa - 100 kPa)

    =  417.5 + 0.001043 (14900)

    = 417.5 + 15.5407

    = 433.04 kJ/kg

Find h₃  

Using steam table:

At pressure p₃ = 15000 kPa

and Temperature = T₃ = 450°C

Then h₃ = 3159 kJ/kg

The entropy s₃ = 6.14 kJ/ kg K

Find h₄

Since entropy s₃ is equal to s₄ So

s₄ = 6.14 kJ/kgK

To compute h₄

s₄ = s_{f} + x_{4} s_{fg}

x_{4} = s_{4} -s_{f} /s_{fg}

x_{4} = 6.14 -  2.45 / 3.89

x_{4}   = 0.9497

The enthalpy h₄:

h₄ = h_{f} +x_{4} h_{fg}

    = 908.4 + 0.9497(1889.8)

    =  908.4 + 1794.7430

    = 2703 kJ/kg

This can simply be computed using the software for steam tables online. Just use the entropy s₃ = 6.14 kJ/ kg K and pressure p₄ = 2000 kPa

Find h₅

Using steam table:

At pressure p₅ = 2000 kPa

and Temperature = T₅ = 450°C

Then h₅  = 3358 kJ/kg

Find h₆:

Since the entropy s₅ = 7.286 kJ/kgK is equal s₆ to  So

s₆ = 7.286 kJ/kgK = 7.29 kJ/kgK

To compute h₆

s₆ = s_{f} + x_{6} s_{fg}

x_{6} = s_{6} -s_{f} /s_{fg}

x_{6} = 7.29 - 1.3028 / 6.0562

x_{6}   = 0.988

The enthalpy h₆:

h₆ = h_{f} +x_{6} h_{fg}

    = 417.51 + 0.988 (2257.5)

    = 417.51 + 2230.41

  h₆ =  2648 kJ/kg

This can simply be computed using the software for steam tables online. Just use the entropy s₅ = 7.286 kJ/kgK and pressure p₅ = 2000 kPa

Compute power used by pump:

P_{p} is found by using:

mass flow rate = m =  1.74 kg/s

Volume of water = v₁ =  0.001043 m³/kg

p₁ = 100 kPa

p₂ = 15,000 kPa

P_{p}  = ( m ) ( v₁ ) ( p₂ - p₁ )

     = (1.74 kg/s) (0.001043 m³/kg) (15,000 kPa - 100 kPa)

     = (1.74 kg/s) (0.001043 m³/kg) (14900)

     = 27.04

P_{p} = 27 kW

Compute heat added q_{a} and heat rejected q_{r}  from boiler using computed enthalpies:

q_{a} = ( h₃ - h₂ ) + ( h₅ - h₄ )

      = ( 3159 kJ/kg - 433.04 kJ/kg ) + ( 3358 kJ/kg - 2703 kJ/kg )

      = 2726 + 655

      = 3381  kJ/kg

q_{r} =  h₆ - h₁

  = 2648 kJ/kg - 417.5 kJ/kg

  = 2232 kJ/kg

Compute net work

W_{net} = q_{a} - q_{r}

       = 3381  kJ/kg - 2232 kJ/kg

       = 1150 kJ/kg

Compute power produced by the cycle

mass flow rate = m =  1.74 kg/s

W_{net} = 1150 kJ/kg

P = m * W_{net}

  = 1.74 kg/s * 1150 kJ/kg

  = 2001 kW

Compute rate of heat transfer in the reheater

Q = m * ( h₅ - h₄ )

   =  1.74 kg/s * 655

   =  1140 kW

Compute Thermal efficiency of this system

μ_{t} = 1 - q_{r} /  q_{a}

   = 1 - 2232 kJ/kg / 3381  kJ/kg

   = 1 - 0.6601

   = 0.34

   = 34%

7 0
3 years ago
A commuter train traveling at 50 mi/h is 3 mi from a station. The train then decelerates so that its speed is 15 mi/h when it is
jonny [76]

Answer:

a) t = 277.477\,s\,(4.625\min), b) v_{f} = 0\,\frac{mi}{h}, c) a = -0.128\,\frac{ft}{s^{2}}

Explanation:

a) The deceleration experimented by the commuter train in the first 2.5 miles is:

a=\frac{[(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot (\frac{1\,h}{3600\,s} )]^{2}-[(50\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot (\frac{1\,h}{3600\,s} )]^{2}}{2\cdot (2.5\,mi)\cdot (\frac{5280\,ft}{1\,mi} )}

a = -0.185\,\frac{ft}{s^{2}}

The time required to travel is:

t = \frac{(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,fi} )\cdot(\frac{1\,h}{3600\,s} )-(50\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,fi} )\cdot(\frac{1\,h}{3600\,s} )}{-0.185\,\frac{ft}{s^{2}} }

t = 277.477\,s\,(4.625\min)

b) The commuter train must stop when it reaches the station to receive passengers. Hence, speed of train must be v_{f} = 0\,\frac{mi}{h}.

c) The final constant deceleration is:

a = \frac{(0\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot(\frac{1\,h}{3600\,s} )-(15\,\frac{mi}{h} )\cdot (\frac{5280\,ft}{1\,mi} )\cdot(\frac{1\,h}{3600\,s} )}{(2.875\,min)\cdot (\frac{60\,s}{1\,min} )}

a = -0.128\,\frac{ft}{s^{2}}

7 0
3 years ago
What must engineers keep in mind so that their solutions will be appropriate?
vekshin1

Answer:

Context

Explanation:

It is of great value for an engineer to keep the context of his/her experiment in mind.

7 0
2 years ago
Consider a regenerative gas-turbine power plant with two stages of compression and two stages of expansion. The overall pressure
iris [78.8K]

Answer: the minimum mass flow rate of air required to generate a power output of 105 MW is 238.2 kg/s

Explanation:

from the T-S diagram, we get the overall pressure ratio of the cycle is 9

Calculate the pressure ratio in each stage of compression and expansion. P1/P2 = P4/P3  = √9 = 3

P5/P6 = P7/P8  = √9 =3  

get the properties of air from, "TABLE A-17 Ideal-gas properties of air", in the text book.

At temperature T1 =300K

Specific enthalpy of air h1 = 300.19 kJ/kg

Relative pressure pr1 = 1.3860  

At temperature T5 = 1200 K

Specific enthalpy h5 = 1277.79 kJ/kg

Relative pressure pr5 = 238  

Calculate the relative pressure at state 2

Pr2 = (P2/P1) Pr5

Pr2 =3 x 1.3860 = 4.158  

get the two values of relative pressure between which the relative pressure at state 2 lies and take the corresponding values of specific enthalpy from, "TABLE A-17 Ideal-gas properties of air", in the text book.  

Relative pressure pr = 4.153

The corresponding specific enthalpy h = 411.12 kJ/kg  

Relative pressure pr = 4.522

The corresponding specific enthalpy h = 421.26 kJ/kg  

Find the specific enthalpy of state 2 by the method of interpolation

(h2 - 411.12) / ( 421.26 - 411.12) =  

(4.158 - 4.153) / (4.522 - 4.153 )

h2 - 411.12 = (421.26 - 411.12) ((4.158 - 4.153) / (4.522 - 4.153))  

h2 - 411.12 = 0.137

h2 = 411.257kJ/kg  

Calculate the relative pressure at state 6.

Pr6 = (P6/P5) Pr5

Pr6 = 1/3 x 238 = 79.33  

Obtain the two values of relative pressure between which the relative pressure at state 6 lies and take the corresponding values of specific enthalpy from, "TABLE A-17 Ideal-gas properties of air", in the text book.  

Relative pressure Pr = 75.29

The corresponding specific enthalpy h = 932.93 kJ/kg  

Relative pressure pr = 82.05

The corresponding specific enthalpy h = 955.38 kJ/kg  

Find the specific enthalpy of state 6 by the method of interpolation.

(h6 - 932.93) / ( 955.38 - 932.93) =  

(79.33 - 75.29) / ( 82.05 - 75.29 )

(h6 - 932.93) = ( 955.38 - 932.93) ((79.33 - 75.29) / ( 82.05 - 75.29 )

h6 - 932.93 = 13.427

h6 = 946.357 kJ/kg

Calculate the total work input of the first and second stage compressors

(Wcomp)in = 2(h2 - h1 ) = 2( 411.257 - 300.19 )

= 222.134 kJ/kg  

Calculate the total work output of the first and second stage turbines.

(Wturb)out = 2(h5 - h6) = 2( 1277.79 - 946.357 )

= 662.866 kJ/kg  

Calculate the net work done

Wnet = (Wturb)out  - (Wcomp)in

= 662.866 - 222.134

= 440.732 kJ/kg  

Calculate the minimum mass flow rate of air required to generate a power output of 105 MW

W = m × Wnet

(105 x 10³) kW = m(440.732 kJ/kg)

m = (105 x 10³) / 440.732

m = 238.2 kg/s

therefore the minimum mass flow rate of air required to generate a power output of 105 MW is 238.2 kg/s

4 0
3 years ago
It is appropriate to use the following yield or failure criterion for ductile materials (a) Maximum shear stress or Tresca crite
Nataly [62]

Answer:

(b)Distortion energy theory.

Explanation:

The best suitable theory for ductile material:

       (1)Maximum shear stress theory (Guest and Tresca theory)

It theory state that applied maximum shear stress should be less or equal to its maximum shear strength.

      (2)Maximum distortion energy theory(Von Mises henkey's        theory)

It states that maximum shear train energy per unit volume at any point  is equal to strain energy per unit volume under the state of uni axial stress condition.

But from these two Best theories ,suitable theory is distortion energy theory ,because it gives best suitable result for ductile material.

6 0
2 years ago
Other questions:
  • Consider the following class definitions: class smart class superSmart: public smart { { public: public: void print() const; voi
    6·1 answer
  • A pipe of 10 cm inner diameter is used to send crude oil over distance of 400 meters. The entire pipe was laid horizontal. The v
    5·1 answer
  • For this question, you will be provided with data related to the count of website sessions by day for the past one hundred days.
    6·1 answer
  • How many grams of water at 5.00 °C would we need to mix with 140.0 g of water at 85.0 °C to obtain a final temperature of 43.0 °
    6·1 answer
  • 2. In the above figure, what type of cylinder arrangement is shown in the figure above?
    9·2 answers
  • Please help on two I will give brainiest​
    13·2 answers
  • What is the measurment unit of permeability?​
    7·2 answers
  • Is the science of measurement
    13·2 answers
  • The minimum recommended standards for the operating system, processor, primary memory (RAM), and storage capacity for certain so
    12·2 answers
  • Instructions: For each problem, identify the appropriate test statistic to be use (t test or z-test). Then compute z or t value.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!