Answer:
Extractive metallurgy
Explanation:
Extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form.
I believe it would be the color Red.
Answer:
a. 1.7 × 10⁻⁴ mol·L⁻¹; b. 5.5 × 10⁻⁹ mol·L⁻¹
c. 2.3 × 10⁻⁴ mol·L⁻¹; 5.5 × 10⁻⁸ mol·L⁻¹
Explanation:
a. Silver iodate
Let s = the molar solubility.
AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq); Ksp = 3.0 × 10⁻⁸
E/mol·L⁻¹: s s
![K_{sp} =\text{[Ag$^{+}$][IO$_{3}$$^{-}$]} = s\times s = s^{2} = 3.0\times 10^{-8}\\s = \sqrt{3.0\times 10^{-8}} \text{ mol/L} = 1.7 \times 10^{-4} \text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BAg%24%5E%7B%2B%7D%24%5D%5BIO%24_%7B3%7D%24%24%5E%7B-%7D%24%5D%7D%20%3D%20s%5Ctimes%20s%20%3D%20%20s%5E%7B2%7D%20%3D%203.0%5Ctimes%2010%5E%7B-8%7D%5C%5Cs%20%3D%20%5Csqrt%7B3.0%5Ctimes%2010%5E%7B-8%7D%7D%20%5Ctext%7B%20mol%2FL%7D%20%3D%201.7%20%5Ctimes%2010%5E%7B-4%7D%20%5Ctext%7B%20mol%2FL%7D)
b. Barium sulfate
BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq); Ksp = 1.1 × 10⁻¹⁰
I/mol·L⁻¹: 0.02 0
C/mol·L⁻¹: +s +s
E/mol·L⁻¹: 0.02 + s s
![K_{sp} =\text{[Ba$^{2+}$][SO$_{4}$$^{2-}$]} = (0.02 + s) \times s \approx 0.02s = 1.1\times 10^{-10}\\s = \dfrac{1.1\times 10^{-10}}{0.02} \text{ mol/L} = 5.5 \times 10^{-9} \text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BBa%24%5E%7B2%2B%7D%24%5D%5BSO%24_%7B4%7D%24%24%5E%7B2-%7D%24%5D%7D%20%3D%20%280.02%20%2B%20s%29%20%5Ctimes%20s%20%5Capprox%20%200.02s%20%3D%201.1%5Ctimes%2010%5E%7B-10%7D%5C%5Cs%20%3D%20%5Cdfrac%7B1.1%5Ctimes%2010%5E%7B-10%7D%7D%7B0.02%7D%20%5Ctext%7B%20mol%2FL%7D%20%3D%205.5%20%5Ctimes%2010%5E%7B-9%7D%20%5Ctext%7B%20mol%2FL%7D)
c. Using ionic strength and activities
(i) Calculate the ionic strength of 0.02 mol·L⁻¹ Ba(NO₃)₂
The formula for ionic strength is
![\mu = \dfrac{1}{2} \sum_{i} {c_{i}z_{i}^{2}}\\\\\mu = \dfrac{1}{2} (\text{[Ba$^{2+}$]}\cdot (2+)^{2} + \text{[NO$_{3}$$^{-}$]}\times(-1)^{2}) = \dfrac{1}{2} (\text{0.02}\times 4 + \text{0.04}\times1)= \dfrac{1}{2} (0.08 + 0.04)\\\\= \dfrac{1}{2} \times0.12 = 0.06](https://tex.z-dn.net/?f=%5Cmu%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Csum_%7Bi%7D%20%7Bc_%7Bi%7Dz_%7Bi%7D%5E%7B2%7D%7D%5C%5C%5C%5C%5Cmu%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%28%5Ctext%7B%5BBa%24%5E%7B2%2B%7D%24%5D%7D%5Ccdot%20%282%2B%29%5E%7B2%7D%20%2B%20%5Ctext%7B%5BNO%24_%7B3%7D%24%24%5E%7B-%7D%24%5D%7D%5Ctimes%28-1%29%5E%7B2%7D%29%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%28%5Ctext%7B0.02%7D%5Ctimes%204%20%2B%20%5Ctext%7B0.04%7D%5Ctimes1%29%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%280.08%20%2B%200.04%29%5C%5C%5C%5C%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ctimes0.12%20%3D%200.06)
(ii) Silver iodate
a. Calculate the activity coefficients of the ions

b. Calculate the solubility
AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq)
![K_{sp} =\text{[Ag$^{+}$]$\gamma_{Ag^{+}}$[IO$_{3}$$^{-}$]$\gamma_{IO_{3}^{-}}$} = s\times0.75\times s \times 0.75 =0.56s^{2}= 3.0 \times 10^{-8}\\s^{2} = \dfrac{3.0 \times 10^{-8}}{0.56} = 5.3 \times 10^{-8}\\\\s =2.3 \times 10^{-4}\text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BAg%24%5E%7B%2B%7D%24%5D%24%5Cgamma_%7BAg%5E%7B%2B%7D%7D%24%5BIO%24_%7B3%7D%24%24%5E%7B-%7D%24%5D%24%5Cgamma_%7BIO_%7B3%7D%5E%7B-%7D%7D%24%7D%20%3D%20s%5Ctimes0.75%5Ctimes%20s%20%5Ctimes%200.75%20%3D0.56s%5E%7B2%7D%3D%203.0%20%5Ctimes%2010%5E%7B-8%7D%5C%5Cs%5E%7B2%7D%20%3D%20%5Cdfrac%7B3.0%20%5Ctimes%2010%5E%7B-8%7D%7D%7B0.56%7D%20%3D%205.3%20%5Ctimes%2010%5E%7B-8%7D%5C%5C%5C%5Cs%20%3D2.3%20%5Ctimes%2010%5E%7B-4%7D%5Ctext%7B%20mol%2FL%7D)
(iii) Barium sulfate
a. Calculate the activity coefficients of the ions

b. Calculate the solubility
BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq
![K_{sp} =\text{[Ba$^{2+}$]$\gamma_{ Ba^{2+}}$[SO$_{4}$$^{2-}$]$\gamma_{ SO_{4}^{2-}}$} = (0.02 + s) \times 0.32\times s\times 0.32 \approx 0.02\times0.10s\\2.0\times 10^{-3}s = 1.1 \times 10^{-10}\\s = \dfrac{1.1\times 10^{-10}}{2.0 \times 10^{-3}} \text{ mol/L} = 5.5 \times 10^{-8} \text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BBa%24%5E%7B2%2B%7D%24%5D%24%5Cgamma_%7B%20Ba%5E%7B2%2B%7D%7D%24%5BSO%24_%7B4%7D%24%24%5E%7B2-%7D%24%5D%24%5Cgamma_%7B%20SO_%7B4%7D%5E%7B2-%7D%7D%24%7D%20%3D%20%280.02%20%2B%20s%29%20%5Ctimes%200.32%5Ctimes%20s%5Ctimes%200.32%20%5Capprox%20%200.02%5Ctimes0.10s%5C%5C2.0%5Ctimes%2010%5E%7B-3%7Ds%20%3D%201.1%20%5Ctimes%2010%5E%7B-10%7D%5C%5Cs%20%3D%20%5Cdfrac%7B1.1%5Ctimes%2010%5E%7B-10%7D%7D%7B2.0%20%5Ctimes%2010%5E%7B-3%7D%7D%20%5Ctext%7B%20mol%2FL%7D%20%3D%205.5%20%5Ctimes%2010%5E%7B-8%7D%20%5Ctext%7B%20mol%2FL%7D)
Answer:
The least substituted product (anti-Markovnikov)
Explanation:
The ROOR is used in the addition reaction of HBr to an organic substance (an alkene for example).
In normal conditions (with no ROOR) the adition of the halogen will be performed in the most substituted C (following the rule of Markovnikov that says that the stability increases with the more substituted is the C).
But in presence of ROOR, the reaction takes other mechanism (free radicals), and the product in this case is the one with the Br added in the least substituted C.