Answer:
The coil radius of other generator is 5.15 cm
Explanation:
Consider the equation for induced emf in a generator coil:
EMF = NBAω Sin(ωt)
where,
N = No. of turns in coil
B = magnetic field
A = Cross-sectional area of coil = π r²
ω = angular velocity
t = time
It is given that for both the coils magnetic field, no. of turn and frequency is same. Since, the frequency is same, therefore, the angular velocity, will also be same. As, ω = 2πft.
Therefore, EMF for both coils or generators will be:
EMF₁ = NBπr₁²ω Sin(ωt)
EMF₂ = NBπr₂²ω Sin(ωt)
dividing both the equations:
EMF₁/EMF₂ = (r₁/r₂)²
r₂ = r₁ √(EMF₂/EMF₁)
where,
EMF₁ = 1.8 V
EMF₂ = 3.9 V
r₁ = 3.5 cm
r₂ = ?
Therefore,
r₂ = (3.5 cm)√(3.9 V/1.8 V)
<u>r₂ = 5.15 cm</u>
Answer:
doppler shift's formula for source and receiver moving away from each other:
<em>λ'=λ°√(1+β/1-β)</em>
Explanation:
acceleration of spaceship=α=29.4m/s²
wavelength of sodium lamp=λ°=589nm
as the spaceship is moving away from earth so wavelength of earth should increase w.r.t increasing speed until it vanishes at λ'=700nm
using doppler shift's formula:
<em>λ'=λ°√(1+β/1-β)</em>
putting the values:
700nm=589nm√(1+β/1-β)
after simplifying:
<em>β=0.17</em>
by this we can say that speed at that time is: v=0.17c
to calculate velocity at an acceleration of a=29.4m/s²
we suppose that spaceship started from rest so,
<em>v=v₀+at</em>
where v₀=0
so<em> v=at</em>
as we want to calculate t so:-
<em>t=v/a</em> v=0.17c ,c=3x10⁸ ,a=29.4m/s²
putting values:
=0.17(3x10⁸m/s)/29.4m/s²
<em>t=1.73x10⁶</em>
A distance of d is covered with 53 mile/hr initially.
Time taken to cover this distance t1 = d/53 hour
Next distance of d is covered with x mile hours.
Time taken to cover this distance t2 = d/x hours.
We have average speed = 26.5 mile / hour
= Total distance traveled/ total time taken
= 

Answer:
When she stops at a fast pace the energy and wind will take the cup forward and it will most likeley brake
Explanation:
I'm not entirely sure this is what you were looking for but I hope this helped!
PLEASE MARK ME AS BRAINLIEST