Answer:
The chemical change in matter is results in a change in its identity and properties.
Explanation:
There are toe type of changes physical change and chemical change.
The chemical change change in matter lead to lost its identity and properties.
Chemical change:
The changes, that occur due to change in the composition of a substance and result in a different compound is known as chemical change.
These changes are irreversible
These changes occur due to chemical reactions
These may not be observed with naked eye
Example:
Combustion of fuel or wood: that oil or wood convert into energy, CO2 and ash in case of wood
Boiling of egg: that change the chemical composition of protein in the egg .
The reaction of Hydrogen and oxygen:
H 2 (g) + O 2 (g) -------------------------------------> 2H 2O (l)
They speed up when they get hotter and they slow down when they get colder. I think
Answer:
La masa de óxido de carbono iv formado es 44 g.
Explanation:
En esta pregunta, se nos pide calcular la masa de óxido de carbono iv formado a partir de la reacción de masas dadas de carbono y oxígeno.
En primer lugar, necesitamos escribir una ecuación química equilibrada.
C + O2 → CO2
De la ecuación, 1 mol de carbono reaccionó con 1 mol de oxígeno para dar 1 mol de óxido de carbono iv.
Ahora, si marca las masas en la pregunta, verá que corresponde a la masa atómica y la masa molar de la molécula de carbono y oxígeno, respectivamente. ¿Qué indica esto?
Como tenemos una relación molar de 1: 1 en todo momento, lo que esto significa es que la masa de óxido de carbono iv producida también es la misma que la masa molar de óxido de carbono iv.
Por lo tanto, procedemos a calcular la masa molar de óxido de carbono iv Esto es igual a 12 + 2 (16) = 12 + 32 = 44 g Por lo tanto, la masa de óxido de carbono iv formado es 44 g
<em>The statement that gives the relationship between energy needed in breaking a bond and the one that is released after breakin</em>g is
The amount of energy it takes to break a bond is always less than the amount of energy released when the bond is formed.
- Bond energy can be regarded as amount of energy that is required in breaking a particular bond.
- For a bond to be broken Energy will be added and when a bond is broken there will be release of energy
- Bond breaking can be regarded as endothermic process, it is regarded as endothermic because there is a lot of energy required to be absorbed.
- Where ever a bond is broken, there must be formation of another bond
- Bond forming on the other hand can be regarded as exothermic process, since there is a release of releases energy.
Therefore, more energy is required in breaking of bond compare to energy released after breaking of bond.
Learn more at : brainly.com/question/10777799?referrer=searchResults
<span> First you need to know how many isotopes there are of silicon, and its average atomic units (look at periodic table). Then make up a system of equations to solve for it. Theres 3 stable silicon isotopes (28, 29, 30) so you will need to have 3 equations. You must be given the percent abundance of at least one of the isotopes to solve because here I can only see 2 equations (numbered down below) set x = percent abundance of si-28 y = percent abundance of si-29 z = percent abundance of si-30 since all of silicon atoms account for 100% of all silicon: x + y + z = 100% = 1 therefore: 1) x = 1 - y - z You also have 2) 28x + 29y + 30z = average atomic mass you can substitute x so that equation becomes: 28 (1 - y - z) + 29y + 30z = average atomic mass See how you have 2 variables here? You cant go on until you know the value of one isotope already or you have given a clue which you can derive the third equation</span>