The angular velocity of the wheel at the bottom of the incline is 4.429 rad/sec
The angular velocity (ω) of an object is the rate at which the object's angle position is changing in relation to time.
For a wheel attached to an incline angle, the angular velocity can be computed by considering the conservation of energy theorem.
As such the total kinetic energy (K.E) and rotational kinetic energy (R.K.E) at a point is equal to the total potential energy (P.E) at the other point.
i.e.
P.E = K.E + R.K.E







Therefore, we can conclude that the angular velocity of the wheel at the bottom of the incline is 4.429 rad/sec
Learn more about angular velocity here:
brainly.com/question/1452612
The electric field produced by a large flat plate with uniform charge density on its surface can be found by using Gauss law, and it is equal to

where

is the charge density

is the vacuum permittivity
We see that the intensity of the electric field does not depend on the distance from the plate. Therefore, the strenght of the electric field at 4 cm from the plate is equal to the strength of the electric field at 2 cm from the plate:
The total displacement of the person walking from point A to point B is 300 yards.
As shown in the figure we can conclude that the required method to calculate the total displacement is the Pythagoras theorem.
<h3>Pythagoras theorem in brief :</h3>
According to the Pythagorean Theorem, the square that represents the hypotenuse, or side of a right triangle that faces the right angle, is equal to the total of the squares on the triangle's legs.(or, in popular algebraic notation,
).
<h3>Calculation: </h3>
Let,
a = 500
b= 300
Hence by using Pythagoras' theorem
Total displacement of the person =
=
= 
Thus the total displacement of the person from starting point is 300 yards.
Learn more about the displacement examples here:
brainly.com/question/11188852
#SPJ4
It's just in the name! Accurate data is helpful, and correct, but reproducible data is all of that, and is able to be given to other people through different sources! At least, that's what my understanding of them are. Hope it helps!
Answer:
When work is positive, the environment does work on an object.
Explanation:
According to the work-energy theorem, the net work done by the forces on a body or an object is equal to the change produced in the kinetic energy of the body or an object.
The concept that summarizes a concept related to the work-energy theorem is that ''When work is positive, the environment does work on an object.''