Answer:
The average atomic mass of an element is the sum of the masses of its isotopes, each multiplied by its natural abundance (the decimal associated with percent of atoms of that element that are of a given isotopе). An element does not have an absolute atomic mass.
<em>Hope</em><em> this</em><em> </em><em>helps</em><em> </em><em>:</em><em>)</em>
Answer:
hmm lemme think bur it will take a while
Balanced equation:
<span>CaO + 2 HCl --> CaCl2 + H2O </span>
<span>Calculate moles of each reactant: </span>
<span>60.4 g CaO / 56.08 g/mol = 1.08 mol CaO </span>
<span>69.0 g HCl / 36.46 g/mol = 1.89 mol HCl </span>
<span>Identify the limiting reactant: </span>
<span>Moles CaO needed to react with all HCl: </span>
<span>1.89 mol HCl X (1 mol CaO / 2 mol HCl) = 0.946 mol CaO </span>
<span>Because you have more CaO than that available, HCl is the limiting reactant. </span>
<span>Calculate moles and mass CaCl2: </span>
<span>1.89 mol HCl X (1 mol CaCl2 / 2mol HCl) X 111.0 g/mol = 105 g CaCl2</span>
Answer:
26 Hydrogen atoms
Explanation:
H2O
Each hydrogen atom: 2+16 = 18g
Hence,
1 atom -> 18g
x atoms -> 709g
709/18 = 39 atoms
Therefore, 39 atoms give 709g
Hence, 26 Hydrogen atoms are used
<em>Feel free to mark it as brainliest :D</em>
I think the correct answer from the choices listed above is option B. When a substance changes from one phase to another, the average kinetic energy of the substance <span>changes since the molecules movements are changed as well. Hope this answers the question. Have a nice day.</span>