Answer:
16.8%
Explanation:
31% NaOH molar mass 40 gm
69% H2O molar mass 18 gm
1000 gm would be
310 gm NaOH or 310/40 = 7.75 moles
690 gm of H2O or 690/18 = 38.333 moles
7.75 / (7.75 + 38.333) = .168 mole fraction
Explanation:
The dipoles in CO are in opposite directions so they cancel each other out, although CO₂ has polar bonds, it is a nonpolar molecule. Therefore, the only intermolecular forces are London dispersion forces. Water (H2O) has hydrogen bond present which is a polar bond which has a high intermolecular force.
Water which has high intermolecular force will require more energy that is a higher temperature to overcome these attractions and are pulled together tightly to form a solid at higher temperatures, so their freezing point is higher.
As the temperature of a liquid decreases, the average kinetic energy of the molecules decreases and they move more slowly.
CO with lower intermolecular forces will not solidify until the temperature is lowered further.
Answer:
Na3PO4 is excess reactant, CaCl2 is limiting reactant.
Explanation:
3CaCl2 + 2Na3PO4 ---> Ca3(PO4)2 + 6NaCl
from reaction : 3 mol 2 mol
given: 6 mol 5 mol (X)
X = (6*2)/3 = 4 mol Na3PO4
For 6 mol CaCl2 we need 4 mol Na3PO4, but we have 5 mol Na3PO4,
Na3PO4 is excess reactant, so CaCl2 is limiting reactant.
Answer:
a. 6 mol of oxygen
b. 10 mol of iron(III)oxide
Explanation:
Use mole concept.
<span>[H3O+] = 10^(-pH) = 10^(-4.20) = 6.3 x 10^-5 M
pOH = 14 - pH = 14 - 4.20 = 9.80
[OH-] = 10^(-pOH) = 10^(-9.80) = 1.6 x 10^-10 M
</span>