Answer:
1.65 m
Explanation:
Energy from spring,
is given by
where k is spring constant and x is the compression distance


Kinetic energy, KE at the highest point is given by
where m is mass and v is velocity
KE=0.5*0.0227*2.27= 0.058485 J
Potential energy, PE of spring is given by
PE=mgh where g is gravitational constant and h is maximum height reached by the mouse
PE=0.0227*9.81= 0.222687h
According to the principle of conservation of energy, the potential energy of the compressed spring is equal to the potential and kinetic energy of the mouse at the maximum high point.

0.425=0.222687h+0.058485
h=(0.425-0.058485)/ 0.222687=1.646671 m
h=1.65 m