Answer:
D
Explanation:
Oxygen is the 8th element in the periodic table. This means that oxygen has 8 protons and 8 electrons. In order to get the number of neutrons you take the atomic weight in this case 15.9999~16 and you subtract it by the number of protons (16-8).
Answer : The mass of sodium bromide added should be, 18.3 grams.
Explanation :
Molality : It is defined as the number of moles of solute present in kilograms of solvent.
Formula used :

Solute is, NaBr and solvent is, water.
Given:
Molality of NaBr = 0.565 mol/kg
Molar mass of NaBr = 103 g/mole
Mass of water = 315 g
Now put all the given values in the above formula, we get:


Thus, the mass of sodium bromide added should be, 18.3 grams.
Answer:f has 14 electrons in 7 sublevel orbitals,d has 10 electrons in 5 sublevel orbitals,p has 6 electrons in 3 sublevel orbitals,s has 2 electrons in 1 sublevel orbital.
Explanation:
can be oxidized to form carbon dioxide
Explanation:
Oxygen is important in the oxidation of glucose because it can be oxidized to form carbon dioxide. Oxidation of glucose involves the reaction of oxygen with glucose in a process called respiration. This gives a product of water, carbon dioxide and energy which is stored as ATP.
- Oxidation involves the addition of oxygen.
- Any specie that undergoes oxidation, is a reducing agent and it is said to be oxidized.
- Oxygen is oxidized to form carbon dioxide and water.
Learn more:
Respiration and photosynthesis brainly.com/question/3437832
#learnwithBrainly
Answer:
Azide synthesis is the first method on the table of synthesis of primary amines. The Lewis structure of the azide ion, N3−, is as shown below.
an azide ion
An “imide” is a compound in which an N−−H group is attached to two carbonyl groups; that is,
imide linkage
You should note the commonly used trivial names of the following compounds.
phthalic acid, phthalic anhydride, and phthalimide
The phthalimide alkylation mentioned in the reading is also known as the Gabriel synthesis.
If necessary, review the reduction of nitriles (Section 20.7) and the reduction of amides (Section 21.7).
Before you read the section on reductive amination you may wish to remind yourself of the structure of an imine (see Section 19.8).
The Hofmann rearrangement is usually called the Hofmann degradation. In a true rearrangement reaction, no atoms are lost or gained; however, in this particular reaction one atom of carbon and one atom of oxygen are lost from the amide starting material, thus the term “rearrangement” is not really appropriate. There is a rearrangement step in the overall degradation process, however: this is the step in which the alkyl group of the acyl nitrene migrates from carbon to nitrogen to produce an isocyanate.
Explanation: