Answer:
The maximum energy stored in the combination is 0.0466Joules
Explanation:
The question is incomplete. Here is the complete question.
Three capacitors C1-11.7 μF, C2 21.0 μF, and C3 = 28.8 μF are connected in series. To avoid breakdown of the capacitors, the maximum potential difference to which any of them can be individually charged is 125 V. Determine the maximum energy stored in the series combination.
Energy stored in a capacitor is expressed as E = 1/2CtV² where
Ct is the total effective capacitance
V is the supply voltage
Since the capacitors are connected in series.
1/Ct = 1/C1+1/C2+1/C3
Given C1 = 11.7 μF, C2 = 21.0 μF, and C3 = 28.8 μF
1/Ct = 1/11.7 + 1/21.0 + 1/28.8
1/Ct = 0.0855+0.0476+0.0347
1/Ct = 0.1678
Ct = 1/0.1678
Ct = 5.96μF
Ct = 5.96×10^-6F
Since V = 125V
E = 1/2(5.96×10^-6)(125)²
E = 0.0466Joules
Answer:
57,42 KJ
Explanation:
By a isobaric proces, the expresion for the works in the jpg adjunt. Then:
W = Pa(Vb - Va) = Pa*Vb - Pa*Va ---(1)
By the ideal gases law: PV=RTn
Then, in (1): (remember Pa = Pb)
W = R*Tb*n - R*T*an = R*n*(Tb - Ta) --- (2)
Since we have 1 Kg air: How much is this in moles?
From bibliography: 28.96 g/mol
Then, in 1 Kg (1000 g) there are:
n = 34,53 mol
Finally, in (2):
W = (8,3144 J/K.mol)*(34,53 mol)*(500K - 300K) = 51 419,9 J ≈ 57,42 KJ
Answer:
You would have to find the friction force of the rubber block which would be found with the equation of Normal force (mass*gravity) times cooeficient of friction which would give 8.82 N for the amount of friction and because you need more force than 8.82 N (assuming gravity is 9.8)
Answer:
The magnitude of the external electric field at P will reduce to 2.26 x 10⁶ N/C, but the direction is still to the right.
Explanation:
From coulomb's law, F = Eq
Thus,
F = E₁q₁
F = E₂q₂
Then
E₂q₂ = E₁q₁

where;
E₂ is the external electric field due to second test charge = ?
E₁ is the external electric field due to first test charge = 4 x 10⁶ N/C
q₁ is the first test charge = 13 mC
q₂ is the second test charge = 23 mC
Substitute in these values in the equation above and calculate E₂.

The magnitude of the external electric field at P will reduce to 2.26 x 10⁶ N/C when 13 mC test charge is replaced with another test charge of 23 mC.
However, the direction of the external field is still to the right.
Question:
A particle moving along the x-axis has a position given by x=(24t - 2.0t³)m, where t is measured in s. What is the magnitude of the acceleration of the particle at the instant when its velocity is zero
Answer:
24 m/s
Explanation:
Given:
x=(24t - 2.0t³)m
First find velocity function v(t):
v(t) = ẋ(t) = 24 - 2*3t²
v(t) = ẋ(t) = 24 - 6t²
Find the acceleration function a(t):
a(t) = Ẍ(t) = V(t) = -6*2t
a(t) = Ẍ(t) = V(t) = -12t
At acceleration = 0, take time as T in velocity function.
0 =v(T) = 24 - 6T²
Solve for T
Substitute -2 for t in acceleration function:
a(t) = a(T) = a(-2) = -12(-2) = 24 m/s
Acceleration = 24m/s