Answer:
B. The [H1+] >[OH1-] and the solution is acidic
Convert all of the units from centimeters to meters by moving the decimal point over to the left two digits.
0.15 m x 0.06 m x 0.12 m
Volume = length x width x height
= 0.15 x 0.06 x 0.12 = 0.00108 m^3
Answer:
The volume is 1.2L
Explanation:
Initial volume (V1) = 700mL = 0.7L
Initial temperature (T1) = 7°C = (7 + 273.15)K = 280.15K
Initial pressure = 106.6kPa = 106600Pa
Final temperature (T2) = 27°C = (27 + 273.15)K = 300.15K
Final pressure (P2) = 66.6kPa = 66600Pa
Final volume (V2) = ?
To solve this question, we need to use combined gas equation which is a combination of Boyle's law, Charles Law and pressure law.
(P1 × V1) / T1 = (P2 × V2) / T2
solve for V2 by making it the subject of formula,
P1 × V1 × T2 = P2 × V2 × T1
V2 = (P1 × V1 × T2) / (P2 × T1)
V2 = (106600 × 0.7 × 300.15) / (66600 × 280.15)
V2 = 22397193 / 18657990
V2 = 1.2L
The final volume of the gas is 1.2L
In amides, the carbonyl carbon is bonded to a nitrogen. The nitrogen in an amide can be bonded either to hydrogens, to carbons, or to both. ... Another way of thinking of an ester is that it is a carbonyl bonded to an alcohol. Thioesters are similar to esters, except a sulfur is in place of the oxygen.
Answer:
The answer to the question is
The wave speed is 53.57 cm/s
Explanation:
The speed of a wave is the distance covered by the wave per unit time.
Wave speed is given by
v = f×λ
where v = The velocity of the wave
f = The wave frequency
λ = The wavelength of the wave
the speed v of the wave can also be expressed interms of the period as
v = λ/T
The freuency of the given wave is f = 5/(0.112 s) = 44.64 Hz and the wavelength is λ = 1.20 cm
Therefore the speed of the wave = 44.64 Hz × 1.20 cm = 53.57 cm/s