I think it might be D or B
And my other two might be A or C
Answer:
Carbon, germanium, tin and lead.
Explanation:
The silicon is belong to the carbon family. There are five elements in carbon family carbon, silicon, germanium, tin and lead. These five elements are present in same group i.e group fourteen. The elements present in same group have same number of valance electrons.
For example.
Carbon electronic configuration:
C₆ = [He] 2s² 2p²
Silicon electronic configuration:
Si₁₄ = [Ne] 3s² 3p²
Germanium electronic configuration:
Ge₃₂ = [Ar] 3d¹⁰ 4s² 4p²
Tin electronic configuration:
Sn₅₀ = [Kr] 4d¹⁰ 5s² 5p²
Lead electronic configuration:
Pb₈₂ = [Xe] 4f¹⁴ 5d¹⁰ 6s² 6p²
we can see that in case of all elements there are four valance electrons, which are equal to the valance electrons of silicon.
Answer:
ΔH = 57.04 Kj/mole H₂O
Explanation:
60ml(0.300M Ba(OH)₂(aq) + 60ml(0.600M HCl(aq)
=> 0.06(0.3)mole Ba(OH)₂(aq) + 0.60(0.6)mole HCl(aq)
=> 0.018mole Ba(OH)₂(aq) + 0.036mole HCl(aq)
=> 100% conversion of reactants => 0.018mole BaCl₂(aq) + 0.036mole H₂O(l) + Heat
ΔH = mcΔT/moles H₂O <==> Heat Transfer / mole H₂O
=(120g)(4.0184j/g°C)(27.74°C - 23.65°C)/(0.036mole H₂O)
ΔH = 57,042 j/mole H₂O = 57.04 Kj/mole H₂O
Now ,
C + O2 → CO2
According to above equation, 1 mole of carbon reacts with one mole of oxygen to produce one mole of carbon dioxide.Thus this implies that 12 g of carbon reacts with 32 g of O2 to produce 44 g of CO2.
No of moles = mass of the substance/molecular mass of the substance.
In this case 1.2 g of carbon reacts with "x "g of O2 to produce 4.4 g of CO2.
No of moles of carbon in this case = 1.2÷ 12 = 0.1 moles.
No of moles of carbon dioxide formed = 4.4÷44 =0.1 moles
Thus already discussed above, 1 mole of carbon reacts with 1 mole of oxygen to produce 1 mole of carbon dioxide. Hence to produce 0.1 mole of CO2 ,0.1 mole of carbon needs to react with 0.1 mole of oxygen.
Also number of moles of O2 = mass of O2÷ molar mass of O2
Substituting number of moles of O2 as 0.1 we get
mass of O2(x) = Number of moles of O2 × Molar mass of O2
Mass of O2 (x) = 0.1 × 32= 3.2 g
Thus mass of 3.2 g O2 reacts with 1.2 g of CO2 to produce 4.4 g of CO2.