Answer: The independent variable is the type of metal being used.
{Note: The "dependent variable" is the "measured density" that corresponds to each of the metals."}.
___________________________________________
Explanation:
___________________________________________
The "independent variable", which is plotted on the "x-axis" (horizontal axis), is the variable that can be "controlled/manipulated". In this case, this would be the type of metal chosen.
The "dependent variable" , which is plotted on the "y-axis" (vertical axis) is the "obtained value/measurement/result" (that "cannot be controlled/manipulated").
In this case, the "density", which is the "measured value" that corresponds to the selected "meal", is the "dependent variable".
___________________________________________
Hope this helpful to you!
Wishing you well!
___________________________________________
Answer:
2
Explanation:
First, find the hydronium ion concentration of the solution with a pH of 4.
[H₃O⁺] = 10^-pH
[H₃O⁺] = 10⁻⁴
[H₃O⁺] = 1 × 10⁻⁴
Next, multiple the hydronium ion concentration by 100 to find the hydronium ion concentration of the new solution.
[H₃O⁺] = 1.0 × 10⁻⁴ × 100 = 0.01
Lastly, find the pH.
pH = -log [H₃O⁺]
pH = -log (0.01)
pH = 2
The pH of a solution that has a hydronium ion concentration 100 times greater than a solution with a pH of 4 is 2.
Hope this helps.
Explanation:
A freezing point is defined as the point in which a liquid state of a substance changes into solid state.
Whereas boiling point is defined as the point at which liquid state of substance starts to convert into vapor state.
So, a substance is freezing at
and boils at
then it means at room temperature, that is, around
the substance is present in liquid state.
This is because between the freezing and boiling point a substance will always exist in liquid state.
Thus, we can conclude that state of the material at room temperature is liquid.