Wires or silver and copper
Answer: Speed = 4 m/s
Explanation:
The parameters given are
Mass M = 60 kg
Height h = 0.8 m
Acceleration due to gravity g= 10 m/s2
Before the man jumps, he will be experiencing potential energy at the top of the table.
P.E = mgh
Substitute all the parameters into the formula
P.E = 60 × 9.8 × 0.8
P.E = 470.4 J
As he jumped from the table and hit the ground, the whole P.E will be converted to kinetic energy according to conservative of energy.
When hitting the ground,
K.E = P.E
Where K.E = 1/2mv^2
Substitute m and 470.4 into the formula
470.4 = 1/2 × 60 × V^2
V^2 = 470.4/30
V^2 = 15.68
V = square root (15.68)
V = 3.959 m/s
Therefore, the speed of the man when hitting the ground is approximately 4 m/s
Since this is a distance/time graph, the speed at any time is the slope
of the part of the graph that's directly over that time on the x-axis.
At time t1 = 2.0 s
That's in the middle of the first segment of the graph,
that extends from zero to 3 seconds.
Its slope is 7/3 . v1 = 7/3 m/s .
At time t2 = 4.0 s
That's in the middle of the horizontal part of the graph
that runs from 3 to 6 seconds.
Its slope is zero.
v2 = zero .
At time t3 = 13 s.
That's in the middle of the part of the graph that's sloping down,
between 11 and 16 seconds.
Its slope is -3/5 . v3 = -0.6 m/s .
Distance fallen = 1/2 ( V initial + V final ) *t
We know
a = -9.8 m/s2
t=120s
To find distance fallen, we need to find V final
Use the equation
V final = V initial + a*t
Substitute known values
V final = 0 + (-9.8)(120)
V final = -1176 m/s
Then plug known values to distance fallen equation
Distance fallen = 1/2 ( 0 + 1176 )(120)
= 1/2(1776)(120)
=106,560 m
This way plugging into distance equation is actually the long way. A faster way is to plug the values into
Distance fallen = V initial * t + 1/2(a*t)
We won't need to find V final using another equation.
But anyways, good luck!
Answer:
T = 1.2 s
T = 15.1 m = 15 m
Explanation:
This is a case of projectile motion:
TOTAL TIME OF FLIGHT:
The formula for total time of flight in projectile motion is:
T = 2 V₀ Sinθ/g
where,
T = Total Time of Flight = ?
V₀ = Launch Speed = 13.9 m/s
θ = Launch Angle = 25°
g = 9.8 m/s²
Therefore,
T = (2)(13.9 m/s)(Sin 25°)/(9.8 m/s²)
<u>T = 1.2 s</u>
<u></u>
RANGE OF BALL:
The formula for range in projectile motion is:
R = V₀² Sin2θ/g
where,
R = Horizontal Distance Covered by ball = ?
Therefore,
T = (13.9 m/s)²(Sin 2*25°)/(9.8 m/s²)
<u>T = 15.1 m = 15 m</u>