I think least electricity is used between probably 7-8a.m. and 4-5p.m.
This is because, around those times, the suns already out. Depending on how sunny it is, it may not be as cold as all the other times of the day. And by then, buildings are typically already warmed all up. Everybody's body heat also may play a factor in buildings. ( if there is a ton of people )
<h2>
Angular acceleration is 80 rad/s²
</h2><h2>
Number of revolutions undergone is 1.02</h2>
Explanation:
We have equation of motion v = u + at
Initial angular velocity, u = 0 rad/s
Final angular velocity, v = 32 rad/s
Time, t = 0.40 s
Substituting
v = u + at
32 = 0 + a x 0.40
a = 80 rad/s²
Angular acceleration is 80 rad/s²
We have equation of motion s = ut + 0.5 at²
Initial angular velocity, u = 0 rad/s
Angular acceleration, a = 80 rad/s²
Time, t = 0.4 s
Substituting
s = ut + 0.5 at²
s = 0 x 0.4 + 0.5 x 80 x 0.4²
s = 6.4 rad
Angular displacement = 6.4 rad

Number of revolutions undergone is 1.02
Answer:
Potential difference is the work done in moving a positive test charge from infinity to the point in question.
Voltage is an expression of PD. (Joules / Coulomb)
Say that a capacitor has a PD of 5 Volts. The work in moving a positive test charge from the positive plate to the negative plate is -5 Joules/Coulomb or -5 volt. (At the positive plate the positive test charge (1 Coulomb) already has a PD of + 5 Volts.)
It is called vaporization. Vaporization is the phase transition from a liquid to a gas by means of evaporation or boiling. Evaporation occurs at temps below the boiling point and occurs on the liquids surface. Boiling is a rapid vaporization that occurs above the boiling temp and below or at the liquids surface.
Via the half-life equation:

Where the time elapse is 11,460 year and the half-life is 5,730 years.

Therefore after 11,460 years the amount of carbon-14 is one fourth (1/4) of the original amount.