A solution may exist in any phase so your answer is D. any of the above
hope this helps :)
If Liquid 1 has a higher specific heat than Liquid 2, then Liquid 1 will take longer to increase in temperature because the higher specific heat of a liquid needs more thermal energy for heating a liquid.
<h3>What is specific heat?</h3>
Specific heat of a substance refers to the quantity of heat that is required to raise the temperature of one gram of a substance by one Celsius degree so we can conclude that Liquid 1 will take longer to increase in temperature
Learn more about heat here: brainly.com/question/24390373
Answer:
The gas argon does not reach a state of vibrational excitation when infrared radiation strikes this gas.
Explanation:
The dry atmosphere is composed almost entirely of nitrogen (in a volumetric mixing ratio of 78.1%) and oxygen (20.9%), plus a series of oligogases such as argon (0.93%), helium and gases of greenhouse effect such as carbon dioxide (0.035%) and ozone. In addition, the atmosphere contains water vapor in very variable amounts (about 1%) and aerosols.
Greenhouse gases or greenhouse gases are the gaseous components of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at certain wavelengths of the infrared radiation spectrum emitted by the Earth's surface, the atmosphere and clouds . In the Earth's atmosphere, the main greenhouse gases (GHG) are water vapor (H2O), carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4) and ozone (O3 ). There is also in the atmosphere a series of greenhouse gases (GHG) created entirely by humans, such as halocarbons (compounds containing chlorine, bromine or fluorine and carbon, these compounds can act as potent greenhouse gases in the atmosphere and they are also one of the causes of the depletion of the ozone layer in the atmosphere) regulated by the Montreal Protocol. In addition to CO2, N2O and CH4, the Kyoto Protocol sets standards regarding sulfur hexafluoride (SF6), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs).
The difference between argon and greenhouse gases such as CO2 is that the individual atoms in the argon do not have free bonds and therefore do not vibrate. As a consequence, it does not reach a state of vibrational excitation when infrared radiation strikes this gas.
Answer:
The melting point of a substance is the temperature at which it change state from solid to liquid is called crystallization point.