Answer:
i want to say flip the coins but im not really sure sry
Explanation:
Answer:
W = 0.060 J
v_2 = 0.18 m/s
Explanation:
solution:
for the spring:
W = 1/2*k*x_1^2 - 1/2*k*x_2^2
x_1 = -0.025 m and x_2 = 0
W = 1/2*k*x_1^2 = 1/2*(250 N/m)(-0.028m)^2
W = 0.060 J
the work-energy theorem,
W_tot = K_2 - K_1 = ΔK
with K = 1/2*m*v^2
v_2 = √2*W/m
v_2 = 0.18 m/s
True, the water would eventually move from solid back to liquid form because of the heat.<span />
Answer:
25°C
Explanation:
Using the linear expansivity formula expressed as;
∝ = ΔL/lΔθ
∝ is coefficient of lineat expansion = 1.2 ∙ 10⁻⁵ °C⁻¹
ΔL is the change in length = 6.00036-6
ΔL = 0.00036m
l is the original length = 6m
Δθ is the change in temperature =θ₂-20
Substituting into the formula;
1.2 ∙ 10⁻⁵ °C⁻¹ = 0.00036/6(θ₂-20)
cross multiply
1.2 ∙ 10⁻⁵ * 6 = 0.00036/(θ₂-20)
7.2 ∙ 10⁻⁵= 0.00036/(θ₂-20)
0.00036 = 7.2 ∙ 10⁻⁵(θ₂-20)
0.00036 = 7.2 ∙ 10⁻⁵θ₂-144∙ 10⁻⁵
7.2 ∙ 10⁻⁵θ₂ = 0.00036+0.00144
7.2 ∙ 10⁻⁵θ₂ = 0.0018
θ₂ = 0.0018/0.000072
θ₂ = 25°C
Hence the temperature at which this bar must be acidic for its compression is 6,00036 m is 25°C