<em>Answer:</em>
- The atom have a full valence electron shell.
<em>Explanation:</em>
- My question is that why covalent bonds take place?
Every atoms tends to from bond with another atoms in order to get nearest electronic configuration of nobel gases. They become stable when their valence shell become complete. So when covelant bond forms between atoms, share electrons to each other and stabilize themselves.
To balance the the chemical reaction, the number of moles
per element is balance is both side of the reaction and also the charge in both
sides of the reation. to balnce the reaction:
S2O3 2- + Cu 2+ ---> S4O6 2- + Cu+
2S2O3 2- + Cu 2+ ---> S4O6 2- + Cu+ + e
Answer:
320 g
Step-by-step explanation:
The half-life of Co-63 (5.3 yr) is the time it takes for half of it to decay.
After one half-life, half (50 %) of the original amount will remain.
After a second half-life, half of that amount (25 %) will remain, and so on.
We can construct a table as follows:
No. of Fraction Mass
half-lives t/yr Remaining Remaining/g
0 0 1
1 5.3 ½
2 10.6 ¼
3 15.9 ⅛ 40.0
4 21.2 ¹/₁₆
We see that 40.0 g remain after three half-lives.
This is one-eighth of the original mass.
The mass of the original sample was 8 × 40 g = 320 g
Point f because that is when it starts going down
Given mass of Scandium = 50.0 g
Increase in temperature of the metal when heated = 
Heat absorbed by Scandium = 
The equation showing the relationship between heat, mass, specific heat and temperature change:

Where Q is heat = 
m is mass = 50.0 g
ΔT = 
On plugging in the values and solving for C(specific heat) we get,
=50.0g(C)(
)
C = 0.491
Specific heat of the metal = 0.491