Answer:
c. Compound 2 is more acidic because its conjugate base is more resonance stabilized
Explanation:
You haven't told us what the compounds are, so let's assume that the formula of Compound 1 is HCOCH₂OH and that of Compound 2 is CH₃COOH.
The conjugate base of 2 is CH₃COO⁻. It has two important resonance contributors, and the negative charge is evenly distributed between the two oxygen atoms.
CH₃COOH + H₂O ⇌ CH₃COO⁻ + H₃O⁺
The stabilization of the conjugate base pulls the position of equilibrium to the right, so the compound is more acidic than 1.
It is called a watt and or wattage
Answer:
Rate of formation of SO₃
= 7.28 x 10⁻³ M/s
Explanation:
According to equation 2 SO₂(g) + O₂(g) → 2 SO₃(g)
Rate of disappearance of reactants = rate of appearance of products
⇒
-----------------------------(1)
Given that the rate of disappearance of oxygen =
= 3.64 x 10⁻³ M/s
So the rate of formation of SO₃
= ?
from equation (1) we can write
![\frac{d[SO_{3}] }{dt} = 2 [-\frac{d[O_{2}] }{dt} ]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BSO_%7B3%7D%5D%20%7D%7Bdt%7D%20%3D%202%20%5B-%5Cfrac%7Bd%5BO_%7B2%7D%5D%20%7D%7Bdt%7D%20%5D)
⇒
= 2 x 3.64 x 10⁻³ M/s
⇒
= 7.28 x 10⁻³ M/s
∴ So the rate of formation of SO₃
= 7.28 x 10⁻³ M/s
Answer:

Explanation:
Given that,
The wavelength of a microwave is 7.42 mm or 0.00742 m
No. of photons, n = 359
We need to find the energy produced by this no of photons. It can be given by the formula as follows :

or

So, the required energy is
.